
Verifiable Random Functions

Silvio Micali� Michael Rabiny Salil Vadhanz

Abstract

We efficiently combine unpredictability and verifiability by
extending the Goldreich–Goldwasser–Micali construction
of pseudorandom functions fs from a secret seed s, so that
knowledge of s not only enables one to evaluate fs at any
point x, but also to provide an NP-proof that the value
fs�x� is indeed correct without compromising the unpre-
dictability of fs at any other point for which no such a proof
was provided.

1 Introduction

PSEUDORANDOM ORACLES. Goldreich, Goldwasser, and
Micali [GGM86] show how to simulate a random ora-
cle from a-bit strings to b-bit strings by means of a con-
struction using a seed, that is, a secret and short random
string. They show that, if pseudorandom generators exist
[BM84, Yao82], then there exists a polynomial-time algo-
rithm F ��� �� such that, letting s denote the seed, the func-
tion fs

def
� F �s� �� � f�� �ga � f�� �gb passes all effi-

cient statistical tests for oracles. That is, to an observer
with sufficiently limited computational resources, accessing
a random oracle from f�� �ga to f�� �gb is provably indis-
tinguishable from accessing (as an oracle) fs, even if al-
gorithm F is publicly known (provided that s is still kept
secret).

THE PROBLEM OF CONSTRUCTING VERIFIABLE PSEUDO-
RANDOM FUNCTIONS. By its very definition, a pseudoran-
dom oracle à la [GGM86] is not verifiable: without knowl-
edge of the seed (or any other additional information), upon
receiving the value z of a pseudorandom oracle fs at point
x, one cannot distinguish it from an independently selected

� Laboratory for Computer Science, MIT, Cambridge, MA 02139.
y Department of Applied Science, Harvard University, Cambridge, MA

02138. Work supported in part by NSF Contract CCR-9877138.
zMIT Laboratory for Computer Science. 545 Technology Square.

Cambridge, MA 02139. E-mail: salil@theory.lcs.mit.edu.
URL: http://theory.lcs.mit.edu/˜salil. Supported by a
DOD/NDSEG fellowship and partially by DARPA grant DABT63-96-C-
0018.

random string of the proper length. The possibility thus ex-
ists that, if it so suits him, the party knowing the seed s may
declare that the value of his pseudorandom oracle at some
point x is other than fs�x� without fear of being detected. It
is for this reason that we refer to these objects as “pseudo-
random oracles” rather than using the standard terminology
“pseudorandom functions” — the values fs�x� come “out
of the blue,” as if from an oracle, and the receiver must sim-
ply trust that they are computed correctly from the seed s.

Therefore, though quite large, the applicability of pseu-
dorandom oracles is limited: for instance, to settings in
which (1) the “seed owner”, and thus the one evaluating
the pseudorandom oracle, is totally trusted; or (2) it is to
the seed-owner’s advantage to evaluate his pseudorandom
oracle correctly; or (3) there is absolutely nothing for the
seed-owner to gain from being dishonest.

One efficient way of enabling anyone to verify that fs�x�
really is the value of pseudorandom oracle fs at point x
clearly consists of publicizing the seed s. However, this
will also destroy the unpredictability of fs: anyone could
easily compute the value of fs at any point.

We instead wish to provide a new type of pseudoran-
dom oracle. Informally, we want one in which the owner
of the seed s can, as usual, evaluate fs at any point, but
also prove (with anNP proof�) that the so obtained values
are indeed correct without compromising the unpredictabil-
ity of the value of fs at any point x for which no proof
of correctness for fs�x� is given. That is, given an input
x, the seed-owner should be able to produce in polynomial
time the value v � fs�x� together with a string proof x ef-
ficiently proving that v is correct. The scheme should have
the property that a unique value v is provable as the value
of fs�x�. We call such a mathematical object a verifiable
(pseudo-)random function, VRF for brevity.

A WEAKER SOLUTION: PSEUDORANDOM ORACLES +
ZERO-KNOWLEDGE PROOFS. If interaction were allowed,
VRFs could be constructed from GGM pseudorandom or-
acles via zero-knowledge proofs [GMR89] and a commit-
ment scheme. Indeed, as suggested in a signature scheme
of Bellare and Goldwasser [BG89], the owner of the seed

�Strictly speaking, we actually allow “MA proofs”, since their verifi-
cation may be probabilistic.



s to a pseudorandom oracle fs can publish a commitment c
to s. Whenever he wishes to prove that v is the value of his
oracle at a point x to a verifier V , he proves in zero knowl-
edge to V that v � fs�x� and that c is a commitment to s.
Such a statement is provable in zero knowledge because all
NP statements are provable in zero knowledge [GMW91].
The trouble with such an approach is that it requires inter-
action. A very efficient incarnation of this idea is given by
Naor and Reingold [NR97], but it still suffers from the need
for interaction.

Such interaction could be removed by using noninter-
active zero-knowledge proofs (NIZK) [BFM88, BDMP91],
as done by Bellare and Goldwasser [BG89]. This ap-
proach however suffers from another drawback: noninterac-
tive zero-knowledge proofs presuppose that the prover and
verifier share a bit-string that is guaranteed to be random.
So the question is who is to select this shared random string
R. Each of the possibilities has a deficiency that we wish to
avoid in defining VRFs:

1. The seed owner selectsR: If the seed owner selects the
shared random string improperly, the soundness of the
NIZK proof system is no longer guaranteed, so there
may be many values v that are “provable” as fs�x�.

2. The verifier selects R: If the verifier selects the shared
random string improperly, the zero-knowledge prop-
erty of the NIZK proof system is no longer guaranteed.
Thus, by proving fs�x� � v with respect to such an
improperly chosen R, the prover may leak knowledge
about the seed s and fs will “lose” its pseudorandom-
ness.

3. The seed owner and verifier jointly selectR by a “coin-
flipping” protocol.: This requires interaction, which
we wish to avoid.

4. A trusted third party selects R: We do not want to as-
sume the existence of such a trusted third party.

OUR SOLUTION. We propose a notion of VRF’s which
needs neither interaction nor sharing a guaranteed ran-
dom string. Rather, we only require that the owner of the
function f publish a public key PK , which can be viewed
as a commitment to the function f . (Indeed, something
must bind the owner to the function in order for “proving
the statement f�x� � v” to make sense.) The crucial way
in which our notion differs from what the NIZK-based ap-
proach discussed above achieves is:

For any public key PK , even an improperly chosen one, a
unique value v is provable as the value of f�x�.

Thus, we may safely have the owner of the function unilat-
erally select and publish the public key. The most obvious
scenario in which this applies is when the public key can be
published once and for all, in a location where it cannot be

changed. But VRFs may also be useful in settings where
the public key is provided “on the fly” to prove that vari-
ous function values (given previously or at the same time)
are indeed consistent with one single VRF. In case the VRF
outputs strings longer than the public key, it may even be
useful to provide the public key on the fly to prove that
a single value is consistent with some VRF, as this would
limit the owner to relatively few choices.

In addition to introducing this notion, we provide an ex-
plicit VRF construction, based on a variant of the RSA as-
sumption. Informally stated, we prove:

Main Theorem: Assume that the RSA function with
large prime exponents cannot be inverted in polyno-
mial time. Then, there exists a VRF from f�� �g� into
f�� �g.

OVERVIEW OF THE CONSTRUCTION. We motivate our
construction by first discussing the relationship between
VRFs and secure signature schemes. In a signature scheme
that is existentially unforgeable against a chosen message
attack [GMR88], the signature of a message x, denoted
SIG�x�, is a value that is unpredictable (even given sig-
natures of chosen other messages), but verifiable (given the
proper public key). However, such schemes do not directly
give rise to VRFs by setting f�x� to be SIG�x�, for two
reasons:

1. There may be many valid signatures for a given string
x (violating the unique provability requirement).

2. SIG�x� is only unpredictable, not necessarily pseudo-
random.

We begin by discussing the first deficiency, as it is the
more serious one. Even though the definition does not guar-
antee the uniqueness of signatures, one might hope that ex-
isting signature schemes happen to have this property. How-
ever, most known secure signature schemes are either prob-
abilistic or history dependent. Either property violates the
the unique provability requirement: if we define f�x� to be
SIG�x�, there may be a multiplicity of signatures of x and
thus a multiplicity of f�x� values, all duly provable. One
can transform a probabilistic signature scheme, such as the
scheme in [GMR88], into a deterministic one if the signer
uses a GGM pseudorandom oracle to replace the random-
ness used. Even so, this does not yield a VRF because one
cannot be certain that the signer used the proper GGM ora-
cle when producing SIG�x�, and hence unique provability
is NOT guaranteed.

More generally, it is not enough that the specified signing
algorithm produces a unique signature for every message.
Rather, it should be the case that the verification algorithm
accepts a unique (or at most one) signature for every mes-
sage (given any fixed, but even improperly chosen, public



key). A signature scheme that satisfies this latter property
can be thought of as a verifiable unpredictable function; that
is, a verifiable unpredictable function is defined analogously
to a verifiable pseudorandom function except the pseudo-
randomness requirement is replaced with unpredictability.

So the two questions that remain are (1) do verifiable un-
predictable functions imply verifiable pseudorandom func-
tions?, and (2) can we construct verifiable unpredictable
functions? The natural approach to answering the first ques-
tion is to use the hardcore bit construction of Goldreich and
Levin [GL89], which is a general tool for converting un-
predictability to pseudorandomness. That is, we replace
the verifiable unpredictable function f�x� with f ��x� �
hf�x�� ri, where r is a randomly chosen binary string of the
same length as f�x� and h�� �i denotes mod-2 inner product.
Note that for this construction to preserve verifiability, r
should be placed in the public key (the proof that f ��x� � b
is a string v such that hr� vi � b together with a proof that
f�x� � v). Unfortunately, it has been shown by Naor and
Reingold [NR98] that using a public Goldreich–Levin vec-
tor r does not work in general for converting unpredictable
functions into pseudorandom functions.� The way we get
around this obstacle is by noting that, a public r can be
used if we restrict to functions whose input length is log-
arithmically related to the security. Then, we remove this
restriction on the input length via a tree-based construction
which converts any VRF with a fixed input length into one
whose domain is f�� �g�.

Thus, we are left with the task of finding a veri-
fiable unpredictable function. Our construction builds
upon an RSA-based unpredictable number generator of
Shamir [Sha83], adapted to secure signature schemes by
[GMY83, DN94, CD96, GHR99, CS99]. Shamir shows that
seeing r��ei mod m for different exponents ei� � � � � � eik
does does not help one predict r��eik�� mod m as long as
all of these k � � exponents are relatively prime to each
other and to ��m�. This suggests constructing a verifiable
unpredictable function by placingm and r in the public key,
and defining f�i� to be v � r��ei mod m. This can be ver-
ified simply by checking that vei � r mod m; the solution
v � Z

�
m to this equation will be unique as long as ei is

guaranteed to be relatively prime to ��m�. Thus, we obtain
all the desired properties as long as we can efficiently index
into a set of such ei’s which are guaranteed to be all rela-
tively prime to each other and to ��m�. We accomplish this
by restricting to exponents which are distinct primes larger
than m, and we index into such a set by using the prime se-
quence generator of Cachin, Micali, and Stadler [CMS99].
This turns out to yield a verifiable unpredictable function
whose input length is logarithmically related to the secu-

�Interestingly, they show that using a private r does in fact work. This
is the only known application of the Goldreich–Levin hardcore bit where
keeping the vector private is necessary.

rity. This restriction on input length is of no concern, be-
cause we increase the input length after converting it into a
VRF using the tree-based construction mentioned above.

2 Preliminaries�

If A��� is a probabilistic algorithm, then for any input
x, the notation “A�x�” refers to the probability space that
assigns to the string � the probability that A, on input x,
outputs �. If S is a probability space, then “x

R
� S” de-

notes the algorithm which assigns to x an element randomly
selected according to S, and “x�� � � � � xn

R
� S” denotes

the algorithm that respectively assigns to, x�� � � � � xn, n ele-
ments randomly and independently selected according to S.
If F is a finite set, then the notation “x

R
� F ” denotes the

algorithm that chooses x uniformly from F . If p��� �� � � ��
is a predicate, the notation PROB�x

R
� S	 y�� � � � � yn

R
�

A�x�	 � � � � p�x� y�� � � � � yn� � � ��
 denotes the probability
that p�x� y�� � � � � yn� � � �� will be true after the ordered ex-
ecution of the algorithms x

R
� S	 y�� � � � � yn

R
� A�x�	 � � �.

3 The Notion of a VRF

3.1 An Informal Exposition

VRF GENERATION. To be a VRF, a function f must pos-
sess both

1. a compact, implicit representation, which does not en-
able one to evaluate f efficiently, and

2. a compact, explicit representation, which enables any-
one to evaluate f efficiently.

The first representation can be viewed as f ’s public key,
PKf , and the second as its corresponding secret key, SKf .
Of course, SKf will be hard to compute from PKf . Ac-
cordingly, to formalize our notion of a VRF we make use of
a probabilistic generating algorithm G outputting a public
key with its matching secret key from a sequence of coin
tosses.

VRF COMPUTATION AND VERIFICATION. Knowledge of
SKf enables one both to evaluate f and to prove the cor-
rectness of such evaluations. We actually envisage that f�x�
is always computed together with, proof x, a string “prov-
ing its correctness”, by running an efficient algorithm F on
inputs x and SKf . The function f proper is thus evalu-
ated by running F , so as to obtain a function value and its
proof, and then “stripping out” the proof. The correctness of
proof x is instead verified by running an efficient algorithm
V on inputs PKf , x, f�x�, and proof x. For convenience,

�Verbatim from [BDMP91] and [GMR88].



we denote the two components of F �SK � x� by F��SK � x�
and F��SK � x� (corresponding to the f�x� and proof x, re-
spectively).

Because a proof of correctness for f�x� is only checked
against f ’s public key, we require that it is impossible to find
a public key (even a “fake” one) of a VRF for which one can
“prove” the correctness of two different VRF outputs for the
same VRF input.

VRF PSEUDORANDOMNESS. Our VRFs are unpredictable
in a very strong sense, that suitably generalizes to our con-
text the original notion of [GGM86]. Informally, VRFs pass
all efficient statistical tests for functions at those values for
which no proof of correctness was provided. In essence,
an efficient statistical test for verifiable functions is an ef-
ficient algorithm T that is given the public key of one of
our functions f , and then “experiments with f” by asking
and receiving both the function value and its corresponding
proof of correctness at any input of its choice. After this
experimentation phase, T outputs a string x in the domain
of f , the exam, which is supposed to be different from any
input on which it has already queried the function. At this
point, T is provided with a value v that, with equal proba-
bility, consists of either (a) f evaluated at the exam or (b)
a random value in f ’s range. Then T enters a “judgement
phase,” in which it attempts to guess whether (a) or (b) is the
case (after obtaining additional function values and proofs
at points of its choice other than x). We say that our VRFs
pass statistical test T if the probability of T guessing cor-
rectly is not substantially better than ���.

We find it convenient to think of T as comprising two
components: TE and TJ . TE is the experimental compo-
nent that queries f and computes the exam, while TJ the
judging component that, given the exam and v, tries to dis-
tinguishes whether v is the value of f at the exam or a ran-
dom value. To enable coordination between TE and TJ , we
let TE pass on to TJ not only the exam, but also any piece
of “state” information that it may deem useful.

3.2 A Formal Definition

Definition (VRFs): Let G, F , and V be polynomial-time
algorithms, where

� G (the function generator) is probabilistic; receives as
input a unary string (the security parameter k); and
outputs two binary strings (the public key PK and se-
cret key SK ) ;

� F � �F�� F�� (the function evaluator) is determinis-
tic; receives as input two binary strings (SK and an
input x to the VRF); and outputs two binary strings
(the value F��SK � x� of the VRF on x and the corre-
sponding proof � F��SK � x�); and

� V (the function verifier) is probabilistic; receives as
input four binary strings (PK , x, v, and proof ); and
outputs either YES or NO.

Let a�N � N � f�g and b� s�N � N be any three func-
tions such that a�k�� b�k�� s�k� are all computable in time
poly�k� and a�k� and b�k� are both bounded by a polyno-
mial in k (except when a takes on the value �). We say that
�G�F� V � is a verifiable pseudorandom function (VRF) with
input length a�k�,� output length b�k�, and security s�k� if
the following properties hold:

1. The following conditions hold with probability � �

����k� over �PK �SK �
R

� G�� k �:

(a) (Domain-Range Correctness):

for all x � f�� �g
a�k�, F��SK � x� � f�� �g

b�k�.

(b) (Complete Provability): for all x � f�� �ga�k�, if
�v� proof � � F �SK � x�,

PROB��V �PK � x � v � proof � � YES
 � ������k�

(this probability is over the coin tosses of V ).

2. (Unique Provability): For everyPK , x, v�, v�, proof �,
and proof � such that v� 	� v�, the following holds for
either i � � or i � �:

PROB�V �PK � x � vi � proof i � � YES
 � ����k�

(this probability over the coin tosses of V ).

3. (Residual Pseudorandomness): Let T � �TE � TJ� be
any pair of algorithms such that TE��� �� and TJ��� �� ��
run for a total of at most s�k� steps when their first
input is �k. Then the probability that T succeeds in the
following experiment is at most ��� � ��s�k�:

(a) Run G��k� to obtain �PK �SK �.

(b) Run TF �SK ���
E ��k�PK � to obtain �x� state�.

(c) Choose r
R
� f�� �g.

i. if r � �, let v � F��SK � x�.

ii. if r � �, choose v
R
� f�� �g

b�k�.

(d) Run TF �SK ���
J ��k� v� state� to obtain guess .

(e) T � �TE � TJ� succeeds if x � f�� �ga�k�,
guess � r, and x was not asked as a query to
F �SK � �� by either TE or TJ .

If �PK �SK �
R

� G�� k �, we shall refer to f��� �
F��SK � �� as an individual VRF. If a�k� � � for all k, we
say that the VRF has unrestricted input length.

�When a�k� takes the value �, it means that the VRF is defined for
inputs of all lengths. Specifically, if a�k� � �, then f�� �ga�k� is to be
interpreted as the set of all binary strings, as usual.



Remarks.
1. Note the adversary T � �TE � TJ� is given F �SK � �� as

an oracle, and thus gets answers that include function
values and proofs of their correctness.

2. A VRF with input length a�k� and output length b�k�
can and security s�k� can be converted into one with
input length a��k� � a�k��dlog� 	�k�e, output length
b��k� � b�k� � 	�k�, and security s��k� � s�k��	�k�.
Simply define f ��x� � f�x
u��
f�x
u��
 � � � f�x

u��k��, where u�� � � � � u��k� are the first 	�k� strings of
length dlog� 	�k�e. (A factor of 	 is lost in the secu-
rity because it takes 	 queries to f to simulate a single
query to f �, and because a factor of 	 is lost in the ad-
versary’s success probability in the “hybrid argument”
based security reduction.)

Hence, to construct a VRF it is sufficient to fix b � �
(i.e., to construct a “verifiable pseudorandom predi-
cate”), and vice versa. In this case, residual unpre-
dictability can be so simplified:

3�. (Residual Pseudorandomness for Predicates): Let
T ��� �� be any algorithm that runs in time s�k�
when its first input is �k. Then the probability
that T succeeds in the following experiment is at
most ��� � ��s�k�:
(a) Run G��k� to obtain �PK �SK �.
(b) Run TF �SK �����k�PK � to obtain �x� guess�.

(c) T succeeds if x � f�� �g
a�k�, guess �

F��SK � x�, and x was not asked as a query
to F �SK � �� by T .

The reasons the “judgement” component TJ can
be eliminated for predicates are: (a) there are
only two possible values for v, so all the oracle
queries that TF �SK ���

J ��k� v� state� would make
in case v � � or v � � can be asked before
actually receiving v. (b) distinguishing a pred-
icate f�x� from a random bit with probability
������s�k� is equivalent to guessing f�x� with
the same probability (cf., [Yao82]).

In order to construct a VRF, we will first construct a ver-
ifiable unpredictable function, which can also be thought of
as a signature scheme in which a unique (or at most one)
signature is accepted by the verification algorithm for every
message and public key.

Definition (VUFs): A verifiable unpredictable function
(VUF) (or unique signature scheme�) �G�F� V � with input
length a�k�, output length b�k�, and security s�k� is defined
in the same way as a VRF, except that the Residual Pseudo-
randomness requirement is replaced with the following:

�The terminology “unique signature scheme” was suggested to us by
Moni Naor and Omer Reingold.

3. (Residual Unpredictability) Let T ��� �� be any algorithm
that runs in time s�k� when its first input is �k. Then
the probability that T succeeds in the following exper-
iment is at most ��s�k�:

1. Run G��k� to obtain �PK �SK �.

2. Run TF �SK �����k�PK � to obtain �x� guess�.

3. T succeeds if x � f�� �g
a�k�, guess �

F��SK � x�, and x was not asked as a query to
F �SK � �� by T .

4 Formal statement of results

First, we exhibit general techniques for converting VUFs
to VRFs and increasing the input length for VRFs.

Proposition 1 (from VUF to VRF) If there is a VUF with
input length a�k�, output length b�k�, and security s�k�,
then, for any a��k� � a�k�, there is a VRF with input
length a��k�, output length b�k� � �, and security s��k� �
s�k������poly�k� � �a

��k��.

Proposition 2 (increasing the input length) If there is a
VRF with input length a�k�, output length 1, and se-
curity s�k�, then there is a VRF with unrestricted input
length, output length b�k� � �, and security at least
minfs�k����� �a�k���g�poly�k�.

These two propositions reduce the problem of construct-
ing VRFs to constructing VUFs. We do the latter based on
a variant of the RSA assumption. We denote by PRIMESk
the set of the k-bit primes, and by RSAk the set of com-
posite integers that are the product of two primes of length
b�k � ����c. (For k large, RSAk contains the hardest k-
bit inputs to any known factoring algorithm.) We make the
following assumption on the hardness of RSA, where the
exponents are primes (1-bit) bigger than the modulus. For
any function s�k� computable in time poly�k�:

The RSA� s�k�-Hardness Assumption: Let A be any
probabilistic algorithm which runs in time s�k� when its
first input is �k. Then the probability that A succeeds in the
following experiment is at most ��s�k�:

1. Select m
R
� RSAk	x

R
� Z

�
m	 p

R
� PRIMESk	��

2. Let y
R
� A��k�m� x� p�.

3. A succeeds if yp � x �mod m�.

Given the state-of-the-art in computational number theory,
it seems reasonable to take s�k� � �k

�

for a small constant

 � �, though we will be able to construct VRFs as long as
s�k� � k����.



Proposition 3 (RSA-based VUFs) Let a�k� � poly�k�
and s�k� be any functions (both computable in time
poly�k�). Under the RSA� s�k�-Hardness Assumption,
there is a VUF with input length a�k�, output length b�k� �
�, and security s��k� � s�k��

�
�a�k� � poly�k�

�
.

Putting all the above together, we conclude:

Theorem 4 Under the RSA� s�k�-Hardness Assumption,
there is a VRF with unrestricted input length, output length
b�k� � �, and security s�k������poly�k�. In particular, if
s�k� � k���� (i.e., RSA� cannot be inverted in polynomial
time), then the VRF also has security k����.

To deduce Theorem 4 we apply the above Propositions
with a�k� � a��k� � �log s�k����. Note that this requires
knowing an a priori lower bound s�k� on the security of
RSA�. However, this drawback can be removed. That is, we
can build VRFs whose construction is independent of the
hardness of RSA�, while the security remains polynomially
related to that of RSA�. This can be done using a standard
trick, which we describe in the full version of the paper.

5 From Unpredictability to Pseudorandom-
ness

In this section, we sketch how to prove Proposition 1,
using the Goldreich–Levin [GL89] hardcore bit to convert
verifiable unpredictable functions to verifiable pseudoran-
dom function. The construction and proof will be given in
more detail in the full version of the paper. Given a VUF
f���, the VRF f ���� is defined by f ��x� � hf�x�� ri, where
r is a binary vector chosen uniformly and placed in the pub-
lic key and h�� �i denotes inner product mod 2. The proof
that f ��x� � � consists of a value v such that hv� ri � �
and a proof that f�x� � v. The Domain-Range Correct-
ness, Complete Provability, and Unique Provability of f �

all follow immediately from the same properties of f .
We now outline the steps in the proof of the residual

unpredictability of f �. Suppose, for sake of contradiction
that there is an adversary T � running in time s� that predicts
f ��x� � hf�x�� ri at an unseen value with probability at
least ��� � ��s�. Then,

1. T � can actually be used to guess hf�x�� ri for a ran-
dom, prespecified x rather than one that T � chooses
its own. This can be done at the price of reducing T �’s
success probability to ������ for �� � ����a

�

�s��, be-
cause a random x will equal the exam T � chooses with
probability ���a

�

. (Recall that a� is the input length for
f �.)

2. By a Markov argument, at least an ���� fraction of the
x’s,
 the marginal probability that T � correctly guesses

�Actually, the choice of f and the coin tosses of T should also be in-
cluded and fixed with x in this ���� probability.

Figure 1. The tree construction

hf�x�� ri taken just over the choice of r is at least
��� � ����.

3. The Goldreich–Levin reconstruction algorithm then
implies that for the same ���� fraction x’s, f�x� itself
can be computed with probability at least ������� at a
cost of increasing the running time of T by a factor of
poly�k�������.

4. All together this gives an adversary T running in time
s� � poly�k������� � s which guesses f�x� correctly
at an unseen point with probability at least ������ �
������� � ��s, contradicting the fact that f has se-
curity s.

6 Increasing the input length

In this section, we sketch the proof of Proposition 2,
which takes a VRF with small (but super-logarithmic) in-
put length and converts it into a VRF with unrestricted in-
put length. The construction and its analysis will be given
in more detail in the full version of the paper. Let f be
any VRF with input length a, output length 1, and se-
curity s. By Remark 2 after the definition of VRFs, we
can easily transform f into a VRF f � with input length
a� � a � O�log a�, output length b� � a� � �, and secu-
rity s� � s�b� � s�poly�k�.

From this VRF f � which shrinks an a�-bit input by one
bit, we will construct a VRF f �� which can take inputs x of
arbitrary lengths. We view f � as defining an infinite binary
tree whose nodes are labelled by strings of length a� � �.
The root of the tree is labelled �a

���, and the two children
of a node labelled y are labelled f ��y�� and f ��y�� (see
Figure 1). Now, to evaluate f �� on a string x, we view the
bits of x � f�� �g

t as defining a path of length t from the
root of the tree. We define f ���x� to be the label of the node
at the last point on this path. Now, a proof for the value of



f �� can be obtained by giving the labels of all nodes on this
path together with f �-proofs for each label.

One small problem with the construction as described so
far is that the path corresponding to a string x contains the
path corresponding to all prefices of x, so having seen the
proof for f ���x�, one knows the value of f �� on all prefices
of x. To avoid this problem, we work with a prefix-free
encoding of strings, which is a map x �� �x
 from f�� �g

� to
f�� �g

� such that there is no pair x 	� y where �x
 is a prefix
of �y
 and furthermore, j�x
j � O�jxj� for all x. (It is easy to
construct such a map which is efficiently computable, e.g.,
�b�b� � � � bt
 � b�b�b�b� � � � btbt��.)

So, in the actual construction, f ���x� is computed as
follows: Let �x
 � b� � � � bt and y� � �a

���, and recur-
sively compute yi � f ��yi��bi�. f ���x� is defined to be
yt. The proof that f ���x� � y is a sequence �y�� � � � � yt�
such that yt � y together with proofs that yi � f ��yi��bi�.
The Domain–RangeCorrectness, Complete Provability, and
Unique Provability of f �� follow from the same properties of
f �. The proof of Residual Pseudorandomness proceeds as
follows:

1. As long as the subtree of labels seen by the adversary
does not contain a repetition (i.e. two different nodes
in the tree that have the same label), the value of f ��

at a new point x is equal to the value of f � at a new
point y (namely y � yt��bt, where �x
 � b�b� � � � bt).
Hence, it is not be distinguishable from random.

2. The subtree of labels seen by the adversary does not
contain a repetition: This follows from the residual
pseudorandomness of f � and the fact that f � has a rea-
sonably large output length b�. Suppose an efficient
adversary does find a repetition with noticeable proba-
bility. Then, one can predict f � by randomly guessing
which of the two nodes in the subtree form the first rep-
etition, and using the label of the first node to predict
the label of the second node. Being able to predict the
value of f � at a new point with probability noticeably
more than ���b

�

distinguishes it from a random value,
violating the residual pseudorandomness of f �.

7 A Verifiable Unpredictable Function

In this section we construct a VUF based on the RSA�

hardness assumption, proving Proposition 3. First we recall
some basic number theory.

NUMBER THEORY. We write �a� b� denote the greatest
common divisor of positive integers a and b. For a positive
integer m, Euler’s totient function, ��m�, is defined as the
number of positive integers � m that are relatively prime
to m. Under multiplication modulo m, the set of all such
integers form a group, denoted by Z�

m. In our VRF con-

struction, we shall use the following two well-known facts
about ��m�:

Fact 1: Ifm is the product of two distinct primes q� and q�,
then ��m� � �q� � �� � �q� � ��.

Fact 2: If �e� ��m�� � �, then the map x �� xe �mod m�
is a permutation on Z�

m. In particular, for any inte-
ger r, there is at most one x � Z

�
m such that xe � r

�mod m� (there will be none if �r�m� 	� �). This x
(if it exists) is denoted r��e and one can compute it in
polynomial time given inputs m, e, x, and ��m�.

As outlined in the introduction, our VUF construc-
tion is based on the unpredictable number generator of
Shamir [Sha83]. The value of f�x� will be defined as r��px

�mod m�, where m and r � Z
�
m are public and px is a

prime 1-bit larger than m. To define the indexing x �� px
into a “random” set of large primes, we use a prime se-
quence generator of Cachin et al. [CMS99], which we de-
scribe first.

THE PRIME-SEQUENCE GENERATOR. Ideally, a prime-
sequence generator is a 1-1 mapping x �� px from a-
bit strings to �k � ��-bit primes. Based on currently
known results on the distribution of primes, such a map-
ping certainly exists, but might not be efficiently com-
putable, unless one uses some unproven assumption — such
as Cramer’s conjecture. To avoid making such assumptions,
we use a a construction of [CMS99], which probabilisti-
cally constructs such a mapping as follows: First, a �k�-
wise independent function Q from f�� �g

a
 f�� � � � � �k�g

to the set of �k � ��-bit integers is randomly selected and
fixed. Then, px is defined to be the first prime among
Q�x� ��� Q�x� ��� � � � � Q�x� �k��. Primes are sufficiently
dense so that this sequence of independent �k���-bit num-
bers will contain a prime with high probability, and even
just the pairwise independence of Q guarantees that all the
px’s will be distinct with high probability.

To implement this idea, we need a polynomial-time
primality tester PrimalityTest, e.g. one of the al-
gorithms given in [SS77, Rab80]. Such an algorithm
PrimalityTest takes a a �k � ��-bit integer n and 	 �
	�k� � poly�k� random bits and outputs 1 with high prob-
ability if n is prime and outputs 0 with high probability if
n is composite. We assume that the error probability of this
algorithm is at most ���k on �k � ��-bit inputs. In order
for the final mapping to be deterministic, the random coins
of PrimalityTestwill be externally chosen and fixed and
given as input to PrimeSeq. Another technicality is that the
�k�-wise mapping Q will be defined by a polynomial over
GF��k�, so a representation of this field (i.e., an irreducible
polynomial of degree k over GF���) must be included with
Q.



Now we formally describe the prime-sequence generator
PrimeSeq. The only modification to the construction of
[CMS99] is that we force its outputs to be “truly �k � ��-
bit” integers (i.e., without leading 0’s).

Description of PrimeSeq��� �� ��

Inputs: an a-bit string x, a polynomialQ of degree at most
�k��� over GF��k� (together with a representation of
the field GF��k�), and an 	-bit string coins .

Output: a �k���-bit integer px (a prime with overwhelm-
ing probability over the choice of Q and coins).

Code for PrimeSeq�x�Q� coins�:
1. For j � �� � � � � �k�, let yj be the �k���-bit string

� 
 Q�x 
 �j�, where �j denotes the j’th string in
f�� �g

k�a under the lexicographic order and we
associate GF����k� with f�� �gk.

2. Use PrimalityTest with random coins coins

to test each yj (viewed as a �k � ��-bit integer)
for primality, and let px be the first (probable)
prime in the sequence y�� y�� � � � � y�k� . Output
px.

The main property of this generator that we will use is the
following.

Proposition 5 ([CMS99]) Let a � k��. Then, with prob-
ability at least � � ����k� over Q and coins selected uni-
formly, fPrimeSeq�x�Q� coins� � x � f�� �g

a
g is a set of

�a distinct �k � ��-bit primes.

THE VUF. We now decribe the VUF construction. Fix
a�k�, the input length, and s�k�, the assumed hardness of
RSA�; we may assume that s�k� � �

p
k, as known factoring

algorithms (cf., [Pom90]) can be break RSA� in that much
time. For notational convenience, we will usually hide the
dependence of the parameters k, writing, for example, a or
s instead of a�k� or s�k�. The generation algorithm G���
chooses the RSA modulus m, the public r � Z

�
m whose

roots will be the values of the function, and the random-
ization needed to fix the prime sequence (the polynomialQ
and the coin tosses for PrimalityTest).

Description of G���

Inputs: a security parameter �k.
Outputs: a public keyPK � �m� r �Q � coins� and a secret

key SK � �PK � ��m��, where m � RSAk; r � Z
�
m;

coins � f�� �g
�; and Q is a polynomial of degree at

most �k�� � over GF��k� (together with a representa-
tion of GF��k�).

Code for G��k�:

1. Use PrimalityTest to compute (by trial and
error) two random primes q� and q� (of length
b�k � ����c). Compute m � q�q� � RSAk, and
then compute ��m� � �q� � �� � �q� � ��.

2. r
R
� Z

�
m, coins

R
� f�� �g

�.

3. Choose a representation for GF����k� (by ran-
domly picking degree k polynomials over
GF����� and testing for irreducibiility) and let Q
be selected uniformly from the set of all polyno-
mials of degree at most �k� � � over GF��k�.

4. Output �m� r�Q� coins� and ��m�.

When given x � f�� �g
a, the evaluation algorithm F

uses x to index into the prime sequence, obtaining a prime
px, and outputs the px’th root of r � Z

�
m as the value of

the VUF at x. This value is its own proof, so we do not
include a separate proof in the output. Strictly speaking,
the output should be a bit-string of a fixed length b�k�, so
elements of Z�

m should be written with leading zeroes to
make them of length exactly k � � as strings. (Recall that
m is the product of two primes of length b�k � ����c, so

m �
�
��k�����	�

��
� �k	�.)

DESCRIPTION OF F ��� ��

Inputs: A secret key SK � �PK � ��m��, where PK �
�m� r �Q � coins� and x � f�� �ga.

Output: a value v � Z�
m (which is its own proof).

Code for F ��m� r�Q� coins�� ��m�� x�:
1. Compute px � PrimeSeq�x�Q� coins�� (We

expect px to be a �k � ��-bit prime.)

2. Compute and output v � r��px �mod m�.
(easily done due to knowledge of ��m�).

To check that the value of the VUF at point x is v, the
main thing the verification algorithm needs to do is make
sure that v is a px’th root of r mod m, i.e., vpx � r
�mod m�. However, to guarantee that this value is unique,
it also should check that px is in fact a prime larger than m
and that v � Z�

m.

Description of V ��� �� ��

Inputs: A public key PK � �m� r �Q � coins�, a point x,
and a value v.

Output: YES or NO.
Code for V ��k� �m� r�Q� coins�� x� v�:

1. Compute px � PrimeSeq�x�Q� coins��

2. Check that px is greater than m and is prime
(by running PrimalityTestusing fresh random
coin tosses, not those from the public key).

3. Check that v � Z�
m and vpx � r �mod m�.

4. If all checks pass, output YES. Otherwise, out-
put NO.



7.1 Correctness of the VUF construction

In this section, we prove that �G�F� V � described in the
previous section is in fact a VRF with security s��k� �
s�k����, establishing Proposition 3. The efficiency of the
algorithms G, F , and V is apparent, so we proceed to the
other conditions.

DOMAIN–RANGE CORRECTNESS & COMPLETE PROV-
ABILITY. By Proposition 5, it is true that with probabil-
ity � � ����k� over the generation of the keys PK �
�m� r �Q � coins� and SK � ���m��, that all the values
px � PrimeSeq�x� Y� y� z� are primes of length k � �.
Since ��m� � m � �k	�, it follows that all of these px’s
are relatively prime with ��m�, and hence r has a px’th
root modulo ��m�. Given that these roots exist, it is im-
mediate that F will successfully compute them, establish-
ing Domain–Range Correctness. Complete Provability also
follows immediately; the only reason V would reject a cor-
rect proof is a faulty execution of the primality testing al-
gorithm PrimalityTest (which occurs with exponentially
small probability).

UNIQUE PROVABILITY. Assume that an adversary
chooses a (good-looking but illegitimate) public key
�m� r�Q� coins� and consider any input x. If px

def
�

PrimeSeq�x�Q� coins� is not prime or is not larger than
m, then the verification algorithm will detect this and reject
with high probability. If px is a prime larger than m, then
px must be relatively prime to ��m�, so r has a unique px’th
root mod m, and this is the only value that the verification
algorithm will accept.

RESIDUAL UNPREDICTABILITY. Suppose, for sake of con-
tradiction, �G�F� V � is not an s��k�-secure VUF and let T
be the adversary running in time s��k� that guesses the value
of the function at an unseen point with probability at least
��s��k�.

We will use T to construct an algorithm A that con-
tradicts the RSA� s�k�-Hardness Assumption. A will be
given a modulus m, a prime p, and u � Z

�
m as input, from

which it will construct a public key PK which it will give
to T . Thus, we first concentrate on how the public key
PK � �m� r �Q � coins� will be constructed. Q will be cho-
sen in such a way that PrimeSeq�x�� Q� coins� � p for a
specified x� � f�� �g

a. This means that �
Q�x
 �j�� should
equal p for some j� � f�� � � � � �k�g, while � 
 Q�x 
 �j�
should be composite for j � j�. We want the distribution
of Q obtained in this way (when p is a random �k � ��-bit
prime) to be close to its distribution in the actual scheme,
which is uniform. This is done using the following proce-
dure:

Description of ChoosePoly��� ��

Inputs: a prime p of length k � �, and x� � f�� �g
a.

Output: a polynomial Q of degree at most �k� � �
over GF��k� and a 	-bit string coins (such that
PrimeSeq�x�� Q� coins� � p)

Code for ChoosePoly�p� x��:

1. w�� � � � � w�k�
R
� f�� �g

k

2. Let j� be the smallest j such that � 
 wj is prime
(by running PrimalityTest on each of them).

3. Choose and fix a representation for GF��k� (ex-
actly as done in the generation algorithm G).

4. LetQ be the unique polynomial of degree at most
�k� � � over GF��k� subject to the conditions
Q�x�
 �j�� � p andQ�x�
�j� � wj for all j 	� j�
(where �j denotes the �k�a�-bit representation of
j, with possible leading zeroes). This step can be
implemented using standard polynomial interpo-
lation.

5. coins
R
� f�� �g�.

6. Output �Q� coins�.

Claim 6 For every x� � f�� �ga, the distribution on
�Q� coins� obtained by running ChoosePoly�p� x�� for a
random prime p of length k � � has statistical difference�

����k� from the uniform distribution on �Q� coins�.

It is straightforward to verify this claim using Propo-
sition 5 and the fact that the error probability of
PrimalityTest is ���k. Of course, �Q� coins� is only part
of the public key. We now describe how the remainder of
the public key is generated. On input �m� p� u�, the follow-
ing algorithmG� will “guess” which point x� the adversary
T will choose as its exam; use ChoosePoly to guarantee
that px� � p; and, following [Sha83], prepare r � Z

�
m

so that the px’th root of r can be easily computed for all
x 	� x�, while the px�’th root of r can be used to compute
the p’th root of u. (This will all be proven in more detail
shortly.)

Description of G���� �� ��

Inputs: a modulus m � RSAk, a prime p of length k � �,
and u � Z�

m.

Output: �m� r�Q� coins� and x� � f�� �g
a.

Code for G��m� p� u�:

1. x�
R
� f�� �g

a.

2. �Q� coins�
R
� ChoosePoly�p� x��.

	The statistical difference between two random variables X and Y is
defined to be maxS jPROB�X � S	� PROB�Y � S	j.



3. Set e �
Q

x�x� PrimeSeq�x�Q� coins� and r �
ue �mod m�.

4. Output �m� r�Q� coins� and x�.

Claim 7 The distribution on ��m� r�Q� coins�� x�� ob-
tained by running G� on m

R

� RSAk, p
R

� PRIMESk	�,
u

R
� Z

�
m has statistical difference at most ����k�

from the distribution obtained by running G��k� to select
�m� r�Q� coins� and independently selecting x� uniformly
in f�� �ga.

Claim 7 is easily deduced from Claim 6 and the fact
that the map u �� ue is a permutation on Z�

m as long as
�e� ��m�� � � (which is the case, since e is the product
of primes greater than ��m� with high probability). By
Claim 7, if T is presented with a public key generated by
G�, it’s success probability will be reduced to by only an
exponentially small amount to ��s��k� � ����k�. In addi-
tion, since x� is independent from the public key produced
by G� (up to statistical difference ����k�), the event that T
chooses x� as its exam is also independent of T ’s success.
Hence, additionally requiring that T ’s success be at x� only
decreases the success probability by a factor of ���a. To
formalize this, we consider the following experiment.

Experiment A:

1. m
R
� RSAk; p

R
� PRIMESk	�; u

R
� Z

�
m

2. ��m� r�Q� coins�� x��
R
� G��m� p� u�

3. Set PK � �m� r �Q � coins�, SK � �PK � ��m��

4. �x� guess� � TF �SK ���

5. T succeeds if x � x�, guess � F �SK � x� (i.e.,
guessp � r �mod m�), and x was not asked to the
oracle F �SK � ��.

By Claim 7 and the above discussion, it follows that the
probability that T succeeds in Experiment A is at least �� def

�
����a � s��k��� ����k� � ��s.

Now we use the analysis of Shamir [Sha83], which
shows that since r � ue where e �

Q
x� �x� px� , it is easy

to answer all of T ’s queries for F �SK � x�� (for x� 	� x�)
without using ��m�. In addition, from F �SK � x�� � r��p,
it is easy to compute u��p. In more detail, we consider the
following algorithm A.

Description of A��� �� ��

Inputs: a k-bit modulus m, a prime p of length k � �, and
u � Z�

m.

Output: u��p (hopefully)

Code for A�m� p� u�:

1. ��m� r�Q� coins�� x��
R
� G��m� p� u�

2. Set PK � �m� r �Q � coins� and e �
Q

x�x� px,

where px
def
� PrimeSeq�x�Q� coins�.

3. Simulate T ��k�PK �. Respond to an oracle
query y as follows:
(a) If y � x�, abort with output FAIL.

(b) If y 	� x�, respond with r��py � uey

�mod m�, where ey � e�py.

4. Obtain output �x� guess� from T .

5. If guessp 	� r �mod m�, then output FAIL.

6. If guessp � r, use the GCD algorithm to calcu-
late � � � Z such that e� �p � �, and output
guess�u� .

Claim 8 A�m� p� u� � u��p �mod m� with probability
at least �� � ��s (over the choice of m

R
� RSAk, p

R
�

PRIMESk	�, u
R
� Z

�
m, and the coins of A).

We now quickly justify this claim. A straightforward
calculation shows that the responses to T ’s oracle queries
are computed correctly (when y 	� x�). Thus, as long as T
does not ask oracle query x�, everything proceeds exactly
as in Experiment A. Our analysis of Experiment A tells us
that with probability at least ��, T � does not ask query x�
and guess � r��px� � r��p. The GCD algorithm will
succeed as long as all the px’s are distinct, and this is the
case with overwhelming probability by Proposition 5 and
Claim 6. Assuming guess � r��p and the GCD algorithm
succeeds, it follows that

guess�u� � r��pu�

� �ue���pu�

� u��e	�p��p � u��p �mod m��

We now just need to analyze the running time of A.
A’s running time is dominated by simulating the oracle
queries of T . For every oracle query of T , A must com-
pute uey mod m, where ey is an integer of lengthO��a � k�
(since e is the product of �a � � primes of length k � �).
This modular exponenation takes timeO��a �k� �poly�k� �
�a � poly�k�. Since there T makes at most s� oracle queries,
the total running time is at most s� � �a � poly�k� � s, vio-
lating the RSA� s�k�-Hardness Assumption.

Acknowledgments

We thank Oded Goldreich, Shafi Goldwasser, Shai
Halevi, Joe Kilian, and David Mazieres, Moni Naor, and
Omer Reingold for their insightful comments and sugges-
tions.



References

[BG89] Mihir Bellare and Shafi Goldwasser. New paradigms
for digital signatures and message authentication
based on non-interactive zero knowledge proofs.
In G. Brassard, editor, Advances in Cryptology—
CRYPTO ’89, volume 435 of Lecture Notes in Com-
puter Science, pages 194–211. Springer-Verlag, 1990,
20–24 August 1989.

[BDMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and
Giuseppe Persiano. Noninteractive zero-knowledge.
SIAM Journal on Computing, 20(6):1084–1118, De-
cember 1991.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-
interactive zero-knowledge and its applications (ex-
tended abstract). In Proceedings of the Twentieth
Annual ACM Symposium on Theory of Computing,
pages 103–112, Chicago, Illinois, 2–4 May 1988.

[BM84] Manuel Blum and Silvio Micali. How to gener-
ate cryptographically strong sequences of pseudo-
random bits. SIAM Journal on Computing,
13(4):850–864, November 1984.

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler.
Computationally private information retrieval with
polylogarithmic communication. In J. Stern, editor,
Advances in Cryptology—EUROCRYPT ’99, volume
1592 of Lecture Notes in Computer Science, pages
402–414. Springer-Verlag, 1999, 2–6 May 1999.

[CD96] Ronald Cramer and Ivan Damgård. New genera-
tion of secure and practical RSA-based signatures.
In Neal Koblitz, editor, Advances in Cryptology—
CRYPTO ’96, volume 1109 of Lecture Notes in Com-
puter Science, pages 173–185. Springer-Verlag, 18–
22 August 1996.

[CS99] Ronald Cramer and Victor Shoup. Signature schemes
based on the strong RSA assumption. Technical Re-
port 99-01, Theory of Cryptography Library, January
1999. See also revision, July 1999.

[DN94] Cynthia Dwork and Moni Naor. An efficient ex-
istentially unforgeable signature scheme and its ap-
plications. In Yvo G. Desmedt, editor, Advances
in Cryptology—CRYPTO ’94, volume 839 of Lec-
ture Notes in Computer Science, pages 234–246.
Springer-Verlag, 21–25 August 1994.

[GHR99] Rosario Gennaro, Shai Halevi, and Tal Rabin. Se-
cure hash-and-sign signatures without the random or-
acle. In J. Stern, editor, Advances in Cryptology—
EUROCRYPT ’99, volume 1592 of Lecture Notes in
Computer Science, pages 123–139. Springer-Verlag,
1999, 2–6 May 1999.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali.
How to construct random functions. Journal of the
ACM, 33(4):792–807, October 1986.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core
predicate for all one-way functions. In Proceedings of

the Twenty First Annual ACM Symposium on Theory
of Computing, pages 25–32, Seattle, Washington, 15–
17 May 1989.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson.
Proofs that yield nothing but their validity or all lan-
guages in NP have zero-knowledge proof systems.
Journal of the ACM, 38(3):691–729, July 1991.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rack-
off. The knowledge complexity of interactive proof
systems. SIAM Journal on Computing, 18(1):186–
208, February 1989.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L.
Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on
Computing, 17(2):281–308, April 1988.

[GMY83] Shafi Goldwasser, Silvio Micali, and Andy Yao.
Strong signature schemes. In Proceedings of the Fif-
teenth Annual ACM Symposium on Theory of Com-
puting, pages 431–439, Boston, Massachusetts, 25–
27 April 1983.

[NR97] Moni Naor and Omer Reingold. Number-theoretic
constructions of efficient pseudo-random functions
(extended abstract). In 38th Annual Symposium on
Foundations of Computer Science, pages 458–467,
Miami Beach, Florida, 20–22 October 1997. IEEE.

[NR98] Moni Naor and Omer Reingold. From unpredictabil-
ity to indistinguishability: A simple construction of
pseudorandom functions from macs (extended ab-
stract). In Hugo Krawczyk, editor, Advances in
Cryptology—CRYPTO ’98, volume 1462 of Lec-
ture Notes in Computer Science, pages 267–282.
Springer-Verlag, 23–27 August 1998.

[Pom90] Carl Pomerance. Factoring. In Carl Pomerance, edi-
tor, Cryptology and Computational Number Theory,
volume 42 of Proceedings of Symposia in Applied
Mathematics, pages 27–47. American Mathematical
Society, 1990.

[Rab80] Michael O. Rabin. Probabilistic algorithms for testing
primality. Journal of Number Theory, 12:128–138,
1980.

[Sha83] Adi Shamir. On the generation of cryptographically
strong pseudorandom sequences. ACM Transactions
on Computer Systems, 1(1):38–44, February 1983.

[SS77] R. Solovay and V. Strassen. A fast Monte-Carlo test
for primality. SIAM Journal on Computing, 6(1):84–
85, March 1977.

[Yao82] Andrew C. Yao. Theory and applications of trapdoor
functions (extended abstract). In 23rd Annual Sym-
posium on Foundations of Computer Science, pages
80–91, Chicago, Illinois, 3–5 November 1982. IEEE.


