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Abstract

Blockchains are gaining traction and acceptance, not just for cryptocurrencies, but
increasingly as an architecture for distributed computing. In this work we seek solutions that
allow a public blockchain to act as a trusted long-term repository of secret information: Our goal
is to deposit a secret with the blockchain, specify how it is to be used (e.g., the conditions under
which it is released), and have the blockchain keep the secret and use it only in the specified
manner (e.g., release only it once the conditions are met). This simple functionality enables
many powerful applications, including signing statements on behalf of the blockchain, using it
as the control plane for a storage system, performing decentralized program-obfuscation-as-a-
service, and many more.

Using proactive secret sharing techniques, we present a scalable solution for implementing
this functionality on a public blockchain, in the presence of a mobile adversary controlling a
small minority of the participants. The main challenge is that, on the one hand, scalability
requires that we use small committees to represent the entire system, but, on the other hand,
a mobile adversary may be able to corrupt the entire committee if it is small. For this reason,
existing proactive secret sharing solutions are either non-scalable or insecure in our setting.

We approach this challenge via “player replaceability”, which ensures the committee is
anonymous until after it performs its actions. Our main technical contribution is a system
that allows sharing and re-sharing of secrets among the members of small dynamic committees,
without knowing who they are until after they perform their actions and erase their secrets.
Our solution handles a fully mobile adversary corrupting roughly 1/4 of the participants at any
time, and is scalable in terms of both the number of parties and the number of time intervals.

Keywords. Blockchain, Evolving-Committee Proactive Secret Sharing, Mobile Adversary, Player
Replaceability



1 Introduction

Imagine publishing a puzzle and handing over the solution to a public blockchain, to keep secret for
a while and reveal it if no one solves the puzzle within a week. More generally, consider using the
blockchain as a secure storage solution, allowing applications and clients to deposit secret data and
specify the permissible use of that data. A blockchain providing such secret storage can enable a
host of novel applications (Section 5). For example, the secret can be a signature key, enabling the
blockchain to sign on behalf of some client or on behalf of the blockchain itself. Alternatively, the
secret can provide a root of trust for key-management and certification solutions, allowing users
and programs to enforce policies specifying how their private data can be used. Or the secret can
be a decryption key for a fully homomorphic encryption scheme, enabling, in a sense, program-
obfuscation-as-a-service via encrypted computation and consensus-enforced conditional decryption.

In this work we investigate the functionality of keeping a secret on a public blockchain. We seek
a scalable solution, whose complexity is bounded by a fixed polynomial in the security parameter,
regardless of how long the secret must be kept for or how many nodes participate in the blockchain.
To achieve scalability, the work of maintaining the secret must be handled by a small committee.
At the same time, the solution must remain secure even against a mobile adversary that can corrupt
different participants at different times, as long as it corrupts no more than a small fraction of the
participants at any given time.1 Thus, the small size of the committee presents a challenge for
security. An adversary would have enough “corruption budget” to corrupt all of the members of
the committee; even if the committee is dynamic, the mobile adversary could corrupt it as soon as
its known.

A beautiful approach for addressing the vulnerability of working with small committees is player
replaceability, introduced by Chen and Micali [CM19] in the setting of reaching consensus in the
Algorand blockchain. In such systems, committees are selected to do some work (such as agreeing on
a block), but each committee member is charged with sending a single message. Most importantly,
the member remains completely anonymous until it sends that message. The attacker, not knowing
the identities of the selected members, cannot target them for corruption until after they complete
their job. For example, the committee can be chosen by having parties self-select by locally solving
moderately hard puzzles, or using “cryptographic sortition” [CM19] based on verifiable random
functions (VRFs) [MRV99].

Using this approach for our purpose is far from simple. How can one share a secret among
the members of an unknown committee? In some contexts, one can devise solutions using the
cryptographic sledgehammer of witness encryption [GGSW13], as sketched in [GG17]: In systems
such as proof-of-stake blockchains, the statement “the committee votes to open the secret” can be
expressed as an NP-statement, and so one can use witness-encryption relative to that statement.
While this approach shows polynomial-time feasibility, we are interested in solutions that can
plausibly be used in practice, and therefore explore approaches that do not require obfuscation-
like tools. Moreover, it is not clear how to extend this solution to systems such as proof-or-
work blockchains, where it is unknown how to encode committee membership as an NP statement
(because committee membership depends on statements such as “longest chain” or “first player to
present a solution to the puzzle”).

1This could mean a small fraction of the stake in a proof-of-stake blockchain, or of the computing power in a
proof-of-work blockchain.
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1.1 Using Proactive Secret Sharing

Our solution relies on proactive secret sharing (PSS) techniques [OY91, CH94, HJKY95], using
well-coordinated messages and erasures to deal with mobile adversaries. Early work on proactive
secret sharing assumed a fixed committee (say of size N), where parties are occasionally corrupted
by the adversary and later recover and re-join the honest set. A drawback of these protocols in
our context is that they require all the members to participate in every handover protocol, and are
therefore not sufficiently scalable. Proactive secret sharing with dynamic committees (DPSS) was
addressed in a number of previous works (e.g., [SLL08, BDLO15, MZW+19]).

Crucial to our solution is a new variant of proactive secret-sharing, that we call evolving-
committee PSS (ECPSS). This variant is similar to DPSS, but with one important difference:
DPSS schemes treat the committee membership as external input to the protocol, and rely on the
promise that all these committees have honest majority. In contrast, in ECPSS the committee-
selection is part of the construction itself, and it is up to protocol to ensure that the committees
that are chosen maintain honest majority.

We show how to implement ECPSS using the approach of player replaceability. Our solution
ensures that the committee members remain anonymous, until after they hand over fresh shares
to a new committee and erase their own. This requires a method of selecting the members of the
next committee and sending messages to them, without the senders knowing who the recipients
are. Moreover, communication in our model must be strictly one way, since the adversary learns
a node’s identity once it sends a message. Committee members are not even allowed to know the
identities of their peers (since some of them may be adversarial), so interactive protocols among
the current members are also not allowed. Designing a solution in this challenging context is the
main contribution of this work.

1.2 Overview of Our Solution

As common in PSS, the timeline of the system is partitioned into epochs, with a handover protocol
at the beginning of each one. In each epoch i, the secret is shared among members of an epoch-i
committee, and the committee changes from one epoch to the next, erasing its secret state once
it passed the secret to the next committee. The committee in every epoch is small, consisting of
ci = O(λ) members out of the entire universe of N users. This lets us reduce the complexity of
the handover protocol from Ω(N) to O(ci) broadcast messages. Our proactive solution is based on
Shamir’s secret sharing scheme [Sha79], and uses the following components:

� We use the blockchain itself to provide synchrony, authenticated broadcast, and PKI. See
Section 2.1.

� We use cryptographic sortition for choosing random but verifiable committees. See Section 2.3.2

� We use two public-key encryption (PKE) schemes, one for long-term keys and the other for
ephemeral committee-specific keys. The long-term PKE needs to be anonymous [BBDP01]:
namely, ciphertexts must not disclose the public keys that were used to generate them.
Both anonymity and secrecy for these schemes must hold even under receiver-selected-opening
attacks, see Section 2.4. (We note that these tools also require erasures.)

2An alternative realization in the context of proof-of-work blockchains could use solving moderately-hard puzzles
for that purpose.
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Figure 1: Nominating and holding committees, the red dots represent corrupted parties.

� We use non-interactive zero-knowledge (NIZK) proofs for statements about encrypted values
lying on a low-degree polynomial (under the ephemeral scheme). The number of encrypted
values in each one of these statements is small, essentially the size ci of the committees from
above.

Our solution uses anonymous public-key encryption to establish a communication mechanism
that allow anyone to post a message to an unknown receiver. We refer to this communication
mechanism as “target-anonymous channels.” Once target-anonymous channels to the next-epoch
committee are established, the current-epoch committee can use them to re-share the secret to the
next-epoch committee.

Establishing target-anonymous channels to the next-epoch committee without revealing the
committee to the adversary is a difficult problem. We solve it by using special-purpose committees,
separate from the ones holding the secret. Namely, we have two types of committees:

� A holding committee that holds shares of the secret.

� A nominating committee whose role is to establish the target-anonymous channels, thereby
“nominating” the members of the next holding committee.

Crucially, the nominating committee does not hold shares, and hence its members can self-select
(because no channels to them need to be established). The self-selection can be accomplished, for
example, by using cryptographic sortition. Once self-selected, each nominator chooses one member
of the next holding committee, and publishes on the blockchain information that lets the current
holding committee send messages to that member, without revealing its identity. See Fig. 1 for a
pictorial illustration of this process.

In more detail, after randomly choosing its nominee for the future holding committee, the
nominator chooses and posts to the blockchain a new ephemeral public key, along with an encryption
of the corresponding ephemeral secret key under the nominee’s long-term public key. We use
anonymous encryption to ensure that the ephemeral keys and ciphertexts do not betray the
identities (or long-term keys) of the nominees. Note that the ephemeral keys themselves may
use a different encryption scheme, that need not be anonymous.

Once the ephemeral keys of the next committee are posted, everyone knows the size of that
committee (call it ci+1). Each member of the current holding committee re-shares its share using a
t-of-ci+1 Shamir secret sharing (with t ≈ ci+1/2), uses the j-th ephemeral key to encrypt the j-th
share, and broadcasts all these encrypted shares along with a proof that the sharing was done
properly.
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Members of the next holding committee recover their ephemeral secret keys by decrypting the
posted ciphertexts with their long-term keys. Each member then collects all the shares that were
encrypted under its ephemeral key and uses them to compute its share of the global secret in the
new committee. Note that all these ciphertexts are publicly known, so they can serve also as a
commitment to the share, enabling the holding committee members to prove correct re-sharing in
the next iteration of the protocol.3

An important feature of this solution is that it does not require the nominating committee
members to prove anything about how they chose their nominees or how the ephemeral keys were
generated. Note that proving the selection would be of limited value, since even if we force corrupted
members of the nominating committee to abide by the protocol, they can corrupt their nominees
as soon as those are chosen. Moreover, asking the nominating committee to prove anything about
their choice while maintaining anonymity would require that they prove size-N statements (i.e.
proving that the receiver is one of the N parties in the system).4

In contrast, holding-committee members must prove that they re-share their shares properly.
But the statements being proven (and their witnesses) are all short: Their size depends only on the
committee size, and does not grow with the total number of parties or the history of the blockchain.
Hence the NIZK complexity in our solution is just polynomial in the security parameter, even if we
were to use the most naive NIZKs.

The lack of proofs by the nominating committee comes at a price, as it allows the adversary to
double dip: An adversary controlling an f fraction of the parties will have roughly an f fraction
of the nominating committee members (all of which can choose to nominate corrupted parties to
the holding committee), and another f fraction of the holding committee members nominated by
honest parties. Hence, our solution can only tolerate adversaries that control less than 29% of the
total population. (In the appendix we mention a variant of the protocol that does require proofs
and is resilient to a higher percentage of adversarial parties, but in a weaker adversary model.)

We also comment that members of the holding committee must replace the secret key for their
long-term keys and erase the old secret key before they post their message in the protocol. Otherwise
the adversary can corrupt them (because they will reveal themselves when posting messages) and
use the old secret key to decrypt everything that was sent to them (in particular the shares that
they received). This means that the term of “long-term keys” is also limited: these keys are used
once and then discarded.

1.2.1 Aside: anonymous PKE and selective-opening.

In our setting, the anonymous PKE needs to provide security against selective-opening attacks (see
discussion in Section 2.4). While it is well understood that semantic-security does not imply secrecy
against selective-opening, the same is not true of anonymity. In Section 6 we show strong evidence
that anonymity is preserved under selective-opening attacks. However, we do not fully resolve this
question, and it remains an interesting problem for future work.

3If the ephemeral PKE scheme is also linearly-homomorphic, it may be possible to compress this commitment to
a single ciphertext encrypting the share of that party.

4The communication can still be kept small using SNARKs, but the computation would have to be at least linear
in N .
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1.2.2 Aside: parties vs. stake or computing power.

The description so far glossed over the question of what exactly is a party in the context of
blockchains. Throughout this manuscript we mostly ignore this issue and think of parties as discrete
entities, even though reality may be more complex. In a proof-of-stake (PoS) blockchain, parties
are weighted by the amount of stake that they hold, with rich parties having more power than poor
ones. Hence the sortition-based solution above must also be weighted accordingly, giving the rich
more seats on the various committees. Similarly, in proof-of-work (PoW) blockchains, the parties
with more computing power should get more seats on the committees. See Section 4 for more
discussion about using stake to represent parties, and about the effect of parties sending tokens to
each other (and hence changing their stake).

1.3 Related Work

Secret sharing was introduced in the works of Shamir [Sha79] and Blakley [Bla79]. The proactive
setting stems from the mobile adversary model of Ostrovsky and Yung [OY91] followed by works of
Canetti-Herzberg and Herzberg et al. in the static-committee setting [CH94, HJKY95, HJJ+97].
The dynamic setting where the set of shareholders changes over time was contemplated in several
works, such as [DJ97, SLL10, DGGK10, BDLO15]. We refer the reader to Maram et al. [MZW+19]
for a detailed comparison of these works (in particular, see their Section 8 and Table 4).

Several works also deal with dynamic shareholder sets in the context of blockchain. The Ekiden
design [CZK+19] provides privacy in smart contracts using a trusted execution environment (TEE).
They also use threshold PRFs to derive periodic contract-specific symmetric keys for encrypting
smart-contracts. Their scheme is described using a static committee but they suggest the use of
proactive secret sharing and rotating committees for increased security. Calypso [KAS+18] uses
blockchain and threshold encryption to build an auditable access control system for the management
of keys and confidential data, and contemplates the possibility of shareholder committees changing
periodically. Helix [ACG+18] selects per-block committees who agree on the next block in the
chain using a PBFT protocol, and use threshold decryption with a fixed static committee to recover
the transactions only after the block is finalized (and also to implement a verifiable source of
randomness). Dfinity [HMW18] also uses threshold cryptography (signatures in their case) and
dynamic shareholder committees for implementing a randomness beacon, but the shared secret
changes with each new committee.

Closest to our work are the works of Maram et al. (CHURP) [MZW+19] and Goyal et al.
[GKM+20] that build proactive secret sharing over dynamic groups in a blockchain environment.
The crucial difference between these works and ours is that they assume a bound of t corrupted
committee members, without regard to how to ensure that such a bound holds. In fact their
techniques are inapplicable in our setting, as they crucially build on active participation of the
receiving committee in the handover protocol. As a result, in the mobile adversary model that we
consider, their protocol is either non-scalable (requiring participation of all the stakeholders) or
insecure (if using small committees). In contrast, our main goal is to maintain absolute secrecy of
the new committee members during handover, to enable the use of small committees.

A concurrent independent work of Choudhuri et al. [CGG+20] deals with MPC in a “fluid”
model where parties come and go and cannot be counted on to maintain state from one step to
the next. This model share some commonalities with ours, but the solutions are very different. In
particular their solution only provides security with abort, which is not enough for our purposes
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(as we need assurance of reconstruction). Their solution uses DPSS, where the composition of the
committees is treated as input (under the promise that they are mostly honest), whereas a crucial
part of our solution is choosing the committees.

Finally, our techniques are somewhat reminiscent of the protocol of Garay et al. [GIOZ17] for
MPC with sublinear communication (and indeed the resilience constant 1−

√
0.5 from Section 3.2

appears in their work as well).

2 Background and Definitions

2.1 Synchrony, Broadcast, PKI, and Adversary

We use the blockchain as a synchronization mechanism, an authenticated broadcast channel, and
a PKI. For synchrony, we assume that all parties know what is the current block number on the
blockchain. For communication, any party can broadcast a message to the blockchain at round i,
and be assured that everyone will receive it no later than round i+ δ (where δ is a known bound).
Moreover, a party that received a message on the blockchain in round i is assured of its sender,
and can also trust that all other parties received the same message at the same round.

This (authenticated) broadcast channel is the only communication mechanism in our model,
and it is fully public. This means that anyone (including the adversary) can see who posts messages
on it. We stress that we do not assume or use sender-anonymous channels, such channels may make
the problem of keeping a secret on the blockchain much easier, but establishing them is notoriously
hard, (if not impossible).

The same broadcast channel is also used for PKI, each party in our system periodically
broadcasts a public key on the authenticated broadcast channel, hence letting everyone else know
about that key.

Finally, we consider a mobile adversary that sees the messages on the broadcast channel and
can corrupt any sender of any message at will. The power of the adversary is measured by its
“corruption budget,” which is defined as follows: The lifetime of the system is partitioned into
epochs, and we assume that the PKI system have each party broadcasts a new key at least once
per epoch. After corrupting a party, the adversary may decide to leave that party alone. If that
happens then this party will broadcast a new key in the next epoch, and then it will no longer
be under the adversary’s control. In other words, the adversary controls a party from the time
that it decides to corrupt it, until that party — after being left alone — broadcasts a new key
(and have that key appears on the broadcast channel). The adversary’s “corruption budget” is
the largest percentage of parties that it controls at any point during the lifetime of the system.
Our solutions in this work ensure security only against attackers whose corruption budget stays
below some fraction f∗ of the overall population. Specifically our main solution in Section 3 has

f∗ = 1−
√

0.5 ≈ 0.29. (We sketch in Appendix A a variant with resilience 3−
√
5

2 ≈ 0.38, but under
a weaker adversary model.)

Importantly, our model assumes that parties can security erase their state, this requirement is
inherent in all proactive protocols.

2.2 Evolving-Committee Proactive Secret Sharing

A t-of-n secret-sharing scheme [Sha79, Bla79] consists of sharing and reconstruction procedures,
where a secret σ is shared among n parties, in a way that lets any t (or more) of them reconstruct
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the secret from their shares. In its simplest form, we only require the following secrecy and
reconstruction properties against efficient adversaries that corrupt up to t− 1 parties:

Definition 2.1 (Secret Sharing). A t-of-n secret-sharing scheme must provide the following two
properties.

Semantic security: An efficient adversary chooses two secrets σ0, σ1, then the sharing procedure
is run and the adversary can see the shares held by all that parties that it corrupts. The adversary
must have at most a negligible advantage in guessing if the value shared was σ0 or σ1.

Reconstruction: After receiving their shares from an honest dealer, the reconstruction protocol
run by ≥ t honest parties will output the correct secret σ (except for negligible probability).

In this work we use Shamir secret sharing [Sha79], where the secret σ is shared among the n
parties by choosing a random degree-(t− 1) polynomial F whose free term is σ (over some field F
of size at least n + 1), associating publicly with each party i a distinct point αi ∈ F , then giving
that party the value σi = F (αi). Thereafter, collection of t parties or more can interpolate and
recover the free term of F .

Robust secret sharing. In addition to the basic secrecy and reconstruction properties above,
many applications of secret-sharing requires also robust reconstruction, namely that reconstruction
succeeds in outputting the right secret whenever there are t or more correct shares, even if it is
given some additional corrupted shares.

Definition 2.2. A t-of-n secret-sharing scheme has robust reconstruction if polynomial-time
adversaries can only win the following game with negligible probability (in n):

� The adversary specifies a secret σ, which is shared among the share holders;

� Later the adversary specifies a reconstruction set R of parties, consisting of at least t honest
parties (and as many corrupted parties as it wants). The reconstruction procedure is run on the
shares of the honest parties in R, as well as shares chosen by the adversary for the corrupted
parties in R.

The adversary wins if the reconstruction procedure fails to output the original secret σ.

Proactive secret sharing (PSS). A PSS scheme [OY91, CH94, HJKY95] is a method of
maintaining a shared secret in the presence of a mobile adversary. The adversary model is that
of Ostrovsky and Yung [OY91], with parties that are occasionally corrupted by the adversary and
can later recover and re-join the honest set. PSS includes share-refresh protocol, which is run
periodically in such a way that shares from different periods cannot be combined to recover the
secret.

A PSS scheme provides the same secrecy and (robust) reconstruction properties from Defini-
tions 2.1 and 2.2, and the power of the adversary is measured by the number of parties that it
can corrupt between two runs of the share-refresh protocol. Typically, the requirement is that over
an epoch from the beginning of one refresh operation until the end of the next one, the adversary
controls at most t− 1 of the n parties.
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Dynamic PSS (DPSS). DPSS is a proactive scheme where the set of n secret holders may
change from one epoch to the next. The share-refresh protocol is replaced by a share-handover
protocol run between two (possibly overlapping) sets of n parties each, allowing the old set of
holders to transfer the secret to the new set. DPSS still provides the same secrecy and (robust)
reconstruction properties from Definitions 2.1 and 2.2 against a mobile adversary, this time under
the assumption that the adversary controls at most t− 1 of the n parties in each set.

Evolving-Committee PSS (ECPSS). Prior work on DPSS ignored the question of how these
committee are formed. In all prior work the composition of the committee was treated as external
input, and the restriction of ≤ t−1 corrupted parties in each committee was a promise. In this work
we take the next step, incorporating the committee-selection into the protocol itself, and proving
that at most t − 1 parties are corrupted whp (in our adversary model). We call this augmented
notion Evolving-Committee PSS (ECPSS),

Definition 2.3. An evolving-committee proactive secret sharing scheme (with parameters t ≤ n <
N) consists of the following procedures:

Trusted Setup (optional). Provide initial state for a universe of N parties;

Sharing. Shares a secret σ among an initial holding committee of size n;

Committee-selection. Select the next n-party holding committee, this protocol runs among all N
parties;

Handover. An n-party protocol, takes the output of committee-selection and the current shares,
and re-shares them among the next holding committee;

Reconstruction. Takes t or more shares from the current holding committee and reconstructs the
secret σ (or outputs ⊥ on failure.)

An ECPSS protocol is scalable if the messages sent during committee-selection and handover are
bounded in total size by some fixed poly(n, λ), regardless of N .

A run of the ECPSS scheme consists of initial (setup and) sharing, followed by periodic runs of
committee-selection and handover, and concludes with reconstruction. Note that some variations
are possible, for example n, t may vary from one committee to the next and even N could change
over time.

In terms of security, we require that ECPSS provides the same secrecy and (robust)
reconstruction properties from Definitions 2.1 and 2.2, within whatever adversary model that is
considered. The main difference with DPSS is that ECPSS no longer enjoys the DPSS “promise”
of mostly-honest committees, instead we have to prove that committees can keep a secret (i.e.
that they are mostly honest) within the given adversary model. In our case, this is a traditional
mobile-adversary model that only assumes some limit on the adversary’s corruption power in the
overall universe (as in Section 2.1 above).

An important feature of scalable ECPSS is that most parties neither send messages during
committee-selection nor take part in the handover protocol. In our mobile-adversary model, this
begs the question of how can such “passive” parties recover from compromise. Our EPSS must
therefore rely on some external mechanism to let passive parties recover, a mechanism which is not
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part of the ECPSS protocol itself. In our setting we rely on the PKI component from Section 2.1
above, where each party broadcasts a new public key at least once per epoch, letting it recover from
an exposure of its old secret key. When proving ECPSS security, however, we need not worry about
this mechanism, we simply assume that such mechanism exists, and consider a party “magically
recovered” if it is left alone by the adversary for a full epoch.

Finally, while it is convenient to consider the same epochs for both the ECPSS protocol and the
underlying adversary model (and indeed we assume so in Section 3), it is not really required. The
refresh protocol can run more often than the PKI-induced epochs. In our context such frequent
secret-refresh may be required, indeed the secret must be refreshed every time that it is used by a
higher-level application, since any use lets the adversary learn who was holding the secret. Such
frequent refresh operations make it even more important to use efficient protocols, and in particular
motivate our insistence on scalability.

2.3 Verifiable Random Functions and Cryptographic Sortition

A verifiable random function (VRF) [MRV99] is a pseudorandom function that enables the key
holder to prove (input, output) pairs. Technically it consists of key-generation, evaluation, and
verification: The key generation chooses public and secret keys, evaluation takes the secret key and
an input and returns the function value and a proof, and verification takes the public key, input,
value, and proof, and outputs accept or reject.

The security properties of a VRF are (a) pseudorandomness: the function value (sans proofs)
are pseudorandom, even given the public key; (b) completeness: the (value, proof) pairs that are
output by evaluation are accepted; and (c) uniqueness: it is infeasible to generate a public key, an
input, and two different (value, proof) pairs, which are both accepted by the verifier (wrt these
public key and input). We refer the reader to [MRV99] for the formal definition. Constructions of
VRFs are known under various number theoretic assumptions (such as RSA, DDH, or hardness in
paring groups), with or without the random-oracle heuristic.

VRFs can be used to implement cryptographic sortition, which is essentially a verifiable lottery
[CM19] that the parties can use to self-select themselves to committees. Each party has a VRF
key pair, the parties all know each other’s public keys, and there is a publicly known input value
that they all agree on. Each party computes the VRF on the public input using its secret key,
thereby obtaining a random value that it can use to determine whether or not it was selected to the
committee. Moreover the party can prove its self-selection to everyone by exhibiting the random
value with the VRF proof.

In many settings (including ours) the adversary has some influence over the public input. In such
settings, the VRF implementation sketched above falls short of implementing a “perfect” lottery,
since the adversary can try many inputs until it finds one that it likes. We therefore consider a
sortition functionality with initial phase where the adversary can reset the lottery, each time getting
the lottery choices corresponding to the parties that it controls. Eventually the adversary decides
that it is happy with its choices, and then the lottery functionality is activated for everyone. This
functionality is described in Fig. 2.

2.4 Selective-Opening Security of Public-Key Encryption

Our solution relies crucially on implementing “target-anonymous” secure channels by broadcasting
encrypted messages. In the mobile-adversary model, this means that the adversary gets to see
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Cryptographic Sortition

Parameters are probability p ∈ (0, 1) and a set of N parties P1, . . . , PN .

1. Initialization. For each i = 1, . . . , N choose a random independent bit bi with Pr[bi = 1] = p.
The adversary can repeatedly request to see all the bits for the corrupted parties, and can
ask that all the bits will be chosen afresh. Once it is happy with its bits, the adversary can
end this phase and move to Phase 2.

2a. Lottery. Once initialization ends, every party Pi can ask for its state, getting the bit bi.

2b. Verification. All parties begin in private mode, and any party can ask at any time for its
mode to be changed to public mode. A party Pi can ask for the state of any other party Pj ,
getting ⊥ if Pj is still in private mode or the bit bj if Pj is in public mode.

Figure 2: The cryptographic sortition functionality.

public keys and encrypted messages, then decide on the nodes that it wants to corrupt, exposing
their secret keys. This attack is known as the receiver selective-opening attack (cf. [DNRS03,
CFGN96, BHY09, BDWY12, HPW15]), and it poses many challenges. In particular, it is known
that secrecy under receiver selective-opening attack does not follow from semantic security [GM84,
BHY09, BDWY12, HRW16], and implementing schemes that provably maintain secrecy in this
setting is challenging. In our setting, we need schemes that provide both secrecy and anonymity
in this model, and these two aspects seem to behave very differently. We begin with the secrecy
aspect, which was researched more in the literature and is better understood.

2.4.1 Secrecy under selective opening attacks

We follow Hazay et al.’s definitions of indistinguishability-based receiver-selective-opening security
(RIND-SO) [HPW15], which build on [DNRS03, BDWY12]. In the RIND-SO security game, the
adversary sees a vector of ciphertexts, encrypting messages that are drawn from some distribution
D. It obtains the opening of a selected subset of them (by obtaining secret keys), then receives from
the challenger either the actual remaining plaintexts, or fake remaining plaintexts that are drawn
afresh from D conditioned on the opened plaintexts. (This game requires that D be efficiently
resamplable [BHK12], namely it should be feasible to draw from D conditioned on the opened
plaintexts.)

Definition 2.4 (Efficiently Resamplable Distribution). Let k, n > 0. A distribution D over
({0, 1}k)n is efficiently resamplable if there is a PPT algorithm ResampD such that for any I ⊂ [n]
and any partial vector m′I consisting of |I| k-bit strings, ResampD(m′I) returns a vector m sampled
from D|m′I – i.e., m is sampled from D conditioned on mI = m′I .

Definition 2.5 (RIND-SO Security). For a PKE scheme PKE = (Gen,Enc,Dec), security
parameter λ, and a stateful PPT adversary A, the RIND-SO game Exprind−so

PKE (A, λ) is as follows.
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1. (pk, sk) = (pki, ski)i∈[n] ← (Gen(1λ))i∈[n]

2. (D,ResampD, state1)← A(pk)

3. m = (mi)i∈[n] ← D
4. c = (ci)i∈[n] ← (Encpki(mi; $))i∈[n]

5. (I, state2)← A(c, state1)

6. m′ ← ResampD(mI)

7. b← {0, 1},m∗ ←

{
m′ if b = 0

m if b = 1

8. b′ ← A(skI ,m
∗, state2)

The advantage of the adversary A is 2 · |Pr[b = b′]− 1
2 |. We say that the scheme is RIND-SO

secure if every PPT A only has advantage negligible in λ.

While not following from standard semantic security (even for semi-adaptive adversaries),
selective-opening security can be obtained from exponentially CPA-secure encryption via complex-
ity leveraging. Encryption schemes with selective-opening security can also be built from receiver-
non-committing encryption (RNCE) [CFGN96], but Nielsen [Nie02] showed that an RNCE scheme
must have secret-key at least as long as the total size of plaintexts that are encrypted to it. However,
Hazay et al. [HPW15] showed that RIND-SO security can be obtained from a weaker “tweaked”
notion of RNCE, and that a construction due to Canetti et al. [CHK05] achieves the desired notion
under the Decision-Composite-residuosity (DCR) assumption.

2.4.2 Anonymity under selective opening attacks.

Bellare et al. defined in [BBDP01] anonymity for static adversaries via indistinguishability between
two keys, but in our setting we need anonymity also against selective opening. We are not aware
of previous work that examined anonymity in this setting, and even defining what it means takes
some care. The naive approach — extending the definition from [BBDP01] by requiring it to hold
in a large group of public keys as long as the adversary does not open the two target keys — is not
interesting (and follows trivially from the standard definition). Instead, it makes sense to require
that the adversary’s decision to open a key (i.e. corrupt its holder) is not significantly impacted
by whether or not that key was used to encrypt a ciphertext. We consider adversary that can
see public keys and ciphertexts and can open some fraction f of the public keys and learn the
corresponding secret keys. We require that the adversary cannot learn the secret keys of much
more than an f fraction of the keys that are actually used to encrypt the ciphertexts. This is
defined via the following game between the adversary and a challenger, with parameters ε,m, t, n
such that ε > 0 is a constant and λ ≤ m, t ≤ n(1− ε):

1. The challenger runs the key generation n times to get (pki, ski) ← Gen(1λ, $) for i = 1, . . . , n,
and sends pk1, . . . , pkn to the adversary;

2. The adversary chooses m plaintext messages x1, . . . , xm;

3. The challenger chooses m distinct random indexes A = {i1, . . . , im} ⊂ [n], uses pkij to
encrypt xj , and sends to the adversary the ciphertexts ctj ← Encpkij

(xj) (j = 1, . . . ,m).
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4. The adversary adaptively chooses indexes k1, k2, . . . , kt one at a times, and for each kj it receives
from the challenger the secret key skkj .

The adversary wins this game if it opens more than t/n + ε fraction of the ciphertext-encrypting
keys indexed by A.

Definition 2.6 (Adaptive Anonymous PKE). A PKE scheme E = (Gen,Enc,Dec) is anonymous
against selective-opening, if for every constant ε > 0 and λ ≤ m, t ≤ n(1− ε), no feasible adversary
can win the above game with non-negligible probability (in λ).

In Section 6 we recall the static-adversary definition of Bellare et al. [BBDP01] (Definition 6.1)
and discuss its relations to our selective-opening notion. We show some evidence that our notion
is implied by the definition from [BBDP01], hence we make the following conjecture:

Conjecture 1. An anonymous PKE against static adversaries as per Definition 6.1 is also
selective-opening anonymous as per Definition 2.6.

2.5 Non-Interactive Zero-Knowledge Proofs

We use the standard definition of NIZK [BFM88] using a common reference string. Let L be
a language defined by the polynomial-time-computable relation R. That is, R is a subset of
{0, 1}∗×{0, 1}∗ such that membership of (x,w) in R can be decided in time polynomial in |x|, and
L = {x|∃w : (x,w) ∈ R}.

Definition 2.7 (NIZK Argument System). A non-interactive zero-knowledge argument system
for an NP-language L with relation R consists of PPT algorithms (CRS,P,V) with the following
properties:

� Completeness: For every (x,w) ∈ R, it holds that:

Pr
[
σ ← CRS(1λ);V(σ, x,P(σ, x, w)) = 1

]
= 1.

� Soundness: For every PPT function f : {0, 1}poly(λ) → {0, 1}λ \ L and all PPT algorithms P∗,
there exists a negligible function ν such that for all λ:

Pr
[
σ ← CRS(1λ);VO(σ, f(σ),P∗O(σ)) = 1

]
< ν(λ)

where O : {0, 1}∗ → {0, 1}λ is a random function.

� Zero-Knowledge: For all PPT adversaries A, there exists a PPT simulator S and a negligible
function ν such that for all λ:∣∣∣Pr

[
σ ← CRS(1λ);AP(σ,x,w)(1λ, σ) = 1

]
− Pr

[
σ ← CRS(1λ);AS(σ,x)(1λ, σ) = 1

]∣∣∣ < ν(λ).
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2.6 Instantiating the Building Blocks for Our Solution

As we sketched in the introduction, our solution uses two PKE schemes, external one for the long-
term keys and internal one for the ephemeral keys. Denote these schemes by E1 (external) and E2
(internal), and denote their combination by E3 = E1 ◦ E2. Namely, E3 uses long-term keys from E1,
and encrypts a message by choosing an ephemeral key pair for E2, encrypting the ephemeral secret
key by the long-term public key, and encrypting the message by the ephemeral public key. The
properties of these schemes that we need are:

� E1 is anonymous under selective-opening, as per Definition 2.6.

� The combination E3 = E1 ◦ E2 is RIND-SO secure as in [HPW15].

In addition we would like the internal scheme E2 to be “secret-sharing friendly”, in the sense that it
allow efficient NIZK proofs that multiple values encrypted under multiple keys lie on a low-degree
polynomial.5 Below we sketch some plausible instantiations.

Achieving anonymity for E1. Since our solution does not require proving anything about the
external scheme, we can use random-oracle-based instantiations, which makes it easier to deal with
selective opening attacks. Moreover, under our Conjecture 1 it is enough to ensure static anonymity
against static adversaries to get also anonymity under selective-opening. It is well known that most
DL-based schemes and most LWE-based schemes are statically anonymous, and there are many
variations of factoring-based schemes that are also anonymous.

Achieving secrecy for E3. To get RIND-SO security for E3 we need both E1 and E2 to provide
secrecy under selective opening. For E1 we may use random-oracle-based hybrid constructions, but
for E2 we need efficient NIZK proofs and hence prefer not to use random oracles.

DCR-based instantiation. To get RIND-SO security for E2, we can use the “tweaked” receiver-
noncommitting encryption from [HPW15]. This method can be instantiated based on the
decision-composite-residuosity (DCR) assumption. We begin with the DCR-based RNCE
scheme of Canetti et al. [CHK05], and apply the usual anonymization methods for factoring-
based scheme to make it also anonymous (e.g., add a random multiple of n, see [HT07]).

This instantiation is also reasonably sharing-friendly, we can have a secret holder provide a
Pedersen commitment to its secret, and prove that the encrypted shares are consistent with the
commitment. A detailed description of such a scheme including the necessary zero-knowledge
proofs can be found in [LNR18, Sec. 6.2.4], and can be made non-interactive using the Fiat-
Shamir heuristic.

DDH-based instantiation. A variation of the above can also be instantiated under DDH. In
this variant, we roughly replace Shamir secret sharing with a Shamir-in-the-exponent sharing
(hence the secret is a random group element gs). This means that the share holders can recover
gs, but not s itself. This supports applications that recover an individual secret but may not
suffice for more complex threshold functions. We can then use the DDH-based RCNE scheme
from [CHK05], and since we do not expect to recover s itself then we do not have the limitation

5The witness for such proof consists of the secret key for one of the keys and the encryption randomness for all
the others.

13



from [CHK05] of only encrypting short messages. This DDH-based scheme can be easily made
anonymous, and also allow simple NIZK proofs via the Fiat-Shamir heuristic.

(We note that this approach does not work for the external E1, since there we need to recover
the actual plaintext.)

It is likely that one could also exhibit plausible instantiations based on LWE, but we have not
worked out the details of such instantiations.

3 Our Evolving-Committee PSS Scheme

Below let N denote the total number of parties in the system, and let C, t be two parameters
denoting the expected size of the holding committee and the threshold, to be determined later
(roughly t ≈ C/2 = O(λ)). In the description below we assume that these parameters are fixed,
but it is easy to adjust the protocol to a more dynamic setting.

We assume the model from Section 2.1, including the availability of a broadcast channel (with
all parties having access to the entire broadcast history). We also assume access to one instance
of the sortition functionality per epoch, a CRS known to all (fir the NIZK), and the PKI. For PKI
we assume that every party has a “long-term”6 public key for an anonymous PKE.

3.1 The Construction

3.1.1 Initial Setup and Sharing.

For setup, we assume that all parties are given access to a common reference string for the NIZK,
as well as the broadcast channel and the PKI. We also assume that the dealer is honest, and for
simplicity we assume that sharing is run during initial setup.

1. On secret σ, the dealer chooses a random degree-(t− 1) polynomial F0 with F0(0) = σ.

2. The dealer also choose a random size-C committee C0 ⊂ [N ], associates with each party j in
the first committee C0 an evaluation point αj , and give that party αj and the share F0(αj).
(To save a bit on notations, we identify each index j with a point αj in the secret-sharing field
and write Fi(j) rather than Fi(αj).)

3. Finally, the dealer also broadcast the α’s and commitments to all the shares, and give each
party in C0 the decommitment string for its share.

We remark that an alternative sharing procedure can instead just use the same mechanism as the
handover protocol below (with the honest dealer playing all the roles in the protocol).

Thereafter, we assume that at the end of every epoch i we have an ci-member holding committee
Ci holding a Shamir sharing of the global secret σ, and it needs to pass that secret to the next
holding committee Ci+1. We also assume that the broadcast channel includes commitments to all
the shares, and that each party in Ci can open the commitment of its share.

6“Long-term” in quote since it is replaced at least once per epoch, we use the name to distinguish these keys from
the “ephemeral” keys of E2 that are only used once in the protocol.
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3.1.2 Committee-Selection.

Run by every party in the system p ∈ [N ]:

1. Use the sortition functionality with HEAD probability C/N to draw a verifiable bit bp. If bp = 0
go to step 5. (We say that a party with bp = 1 has a seat on the nominating committee, and
note that the expected number of seats is C.)

2. Choose at random a nominee q ∈ [N ] and get from the PKI its “long-term” public key pkq for
the anonymous PKE E1.

3. Generates a new ephemeral key pair (esk, epk) ← E2.Keygen($), and use pkq to encrypt the
ephemeral secret key, ct← E1.Encpkq(esk).

4. Erase esk, set your sortition state to public, and broadcast (epk, ct).

5. Watch the broadcast channel, let (epk1, ct1), . . . , (epkci+1
, ctci+1) be those broadcast pairs that

were sent by parties with public sortition bits bp′ = 1, ordered lexicographically by the public
key values epk?. (Note that all honest parties have a consistent view of this list and in particular
agree on the value ci+1.)

6. For each such pair (epkj , ctj), try to decrypt ct with your long-term secret key skp and see if
the result is the secret key eskj corresponding to epkj . If so then store eskj locally, it represents
the j’th seat on the holding committee Ci+1.

We note that each (epk, ct) establishes a “target-anonymous communication channel” to some
party q. We also note that as part of the implementation of sortition, setting the sortition state to
public would involve broadcasting the sortition proof together with (epk, ct).

3.1.3 The Handover Protocol.

We use a technique similar to [GRR98] to re-share the secret among the seats on the holding
committee Ci+1.

Previous-epoch holding committee members. By induction, the shares held by Ci define
a degree-(t − 1) polynomial Fi with Fi(0) = σ, where each seat j holds a share σj = Fi(j). Let
I = {1, 2, . . . , ci+1} be the non-zero evaluation points used for a t-of-ci+1 Shamir secret-sharing
scheme. A party q holding seat j does the following:

1. Choose a random degree-(t− 1) polynomial Gj with Gj(0) = σj .

2. For each k ∈ I Set σj,k = Gj(k) and use the k’th ephemeral public key to encrypt it, setting
ctj,k = Encepkk(σj,k).

3. Let comj be the commitment from the previous round to the share σj . Generates a
NIZK proof for the statement that (comj , ctj,1, . . . , ctj,ci+1) are commitment/encryptions of
values on a degree-(t − 1) polynomial w.r.t evaluation points (0, 1, . . . , ci+1) (and public keys
epk1, . . . , epkci+1

) respectively.7 Denote this proof by πj .

7The witness for this NIZK proof consists of the ephemeral secret key eskj that was used to decrypt comj , and
the randomness that was used to encrypt the ctj,k’s.
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4. Choose a new long-term key-pair, (sk′q, pk
′
q)← E1.Keygen($), and erase the previous skq as well

as all the protocol secrets (including all shares and ephemeral secret keys).

5. Broadcast a message that includes pk′q (for the PKI) and
(
ctj,1, . . . , ctj,ci+1 , πj

)
.

Next-epoch holding committee members. Let (~ct1, π1), . . . , (~ctci , πci) be the messages borad-
cast by prior-epoch committee members that include valid NIZK proofs, ordered lexicographically.
Note again that all honest parties will agree on these messages and their respective prior-epoch
evaluation points j1, . . . , jci . Let λj1 , . . . , λjt be the Lagrange coefficients for the first t points
j1, . . . , jt. Namely F (0) =

∑t
k=1 λjk · F (jk) holds for every polynomial F of degree (t− 1).

Each party p with seat k on the holding committee Ci+1 does the following:

1. Choose the first t ciphertext vectors ~ct1, . . . , ~ctt, and extract the k’th ciphertext from each
ct1,k, . . . , ctt,k.

2. Use the ephemeral secret key eskk to decrypt them to get the values σj1,k = Gj1(k) through
σjt,k = Gjt(k).

3. Compute the share of the global secret corresponding to seat k as∑
j∈{j1,...,jt}

λj · σj,k.

Moreover, the ciphertexts ctj1,k, . . . , ctjt,k are kept and used as the commitment value to this share
(with the decommitment information being the ephemeral secret key eskk).

Handover correctness. To see that the values computed by the holding committee members in
the handover protocols are indeed shares of the global secret, let us define the polynomial

Fi+1 =
∑

j∈{j1,...,jt}

λj ·Gj ,

where Gj is the polynomial chosen by the (holder of) the j’th seat on the holding-committee of
period i. Since the Gj ’s all have degree-(t− 1), then so is Fi+1, and moreover we have

Fi+1(0) =
∑

j∈{j1,...,jt}

λj ·Gj(0) =
∑

j∈{j1,...,jt}

λj · Fi(j) = Fi(0) = σ.

On the other hand, for each seat k on the holding committee of period (i+ 1), we have∑
j∈{j1,...,jt}

λj · σj,k =
∑

j∈{j1,...,jt}

λj ·Gj(k) = Fi+1(k).

3.1.4 Reconstruction.

We use Shamir reconstruction, after checking validity relative to the commitments in the broadcast
channel. Specifically, each party in the reconstruction set R provides its evaluation point and share
of the global secret, as well as an NP-witness showing that this share is consistent with the relevant
ciphertexts from the broadcast channel.8 The procedure takes the first t evaluation points that have
valid proofs, and uses interpolation to recover the secret from the corresponding shares.

8These NP witness is just the secret key of the ephemeral key that was used to send the shares to it.which need
not be hidden anymore now that the secret is revealed.
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3.2 The parameters C and t

Below we analyze the parameters of our scheme vs. the fraction of corrupted parties that it can
withstand. Jumping ahead, our scheme can withstand a fraction f of corrupted parties strictly
below f∗ = 1−

√
0.5 ≈ 0.29, the committee-size parameter needs to be C = Ω

(
λ

f(1−f)(f∗−f)2
)
, and

the threshold can be set as t ≈ C/2. The process that we analyze is not very different from the one
in [GIOZ17, Thm 3] (and indeed we can tolerate the same fraction f∗ = 1 −

√
0.5 as there). The

main difference is that in our case the adversary can reset the sortition choice many times, which
gives it some additional power but does not change the asymptotic behavior.

Our analysis uses tail bounds for the binomial distribution, so we begin by stating some
properties of these bounds in the regime of interest. Let p ∈ (0, 1) and let k, n be integers with
pn < k ≤ n, Our analysis is concerned with a setting where p = o(1) (in the scheme we have
p = C/N), and we use following Chernoff bounds:

Pr [Bin(n, p) > pn(1 + ε)] < exp(−npε2/(2 + ε)), and

Pr [Bin(n, p) < pn(1− ε)] < exp(−npε2/2). (1)

In this analysis we ignore computational issues and assume that the adversary selects the keys
to open without any information about membership in the nominating- and holding-committees.
Our computational assumptions in Section 3.3 ensure that poly-time adversaries cannot do much
better even if they do see the various keys and ciphertexts. In this information-theoretic analysis
we can make the following simplifying assumptions:

� The adversary is computationally unbounded, but still can only reset the sortition functionality
from Fig. 2 a bounded number of times, and it is subject to a budget of corrupting at most fN
parties.

� Corrupted members of the nominating committee choose only corrupted members for the
holding committee, and

� The adversary corrupts all the fN parties at the beginning of the handover protocol and these
remain unchanged throughout.

To see why we can make the last assumption (in this information-theoretic setting), observe that
any change in the number of corrupted seats that happens because the adversary make later choice
of whom to corrupt implies in particular that the adversary gained information about the not-yet-
corrupted members of the holding committee.

If we let c denote the number of seats on the holding committee, φ denote the number of
corrupted seats, and t denote the threshold, then we need φ < t (for secrecy) and c − φ ≥ t (for
liveness). We show below how to set the parameter C (that determines the expected committee
size) and the threshold t so as to get secrecy and liveness with high probability.

Recalling that our model of sortition from Section 2.3 allows the adversary to reset its choice
many times, the process that we want to analyze is as follows:

1. The adversary corrupts f ·N parties;

2. The adversary resets the sortition functionality a polynomial number of times, until it is happy
that enough of its corrupted parties are selected to the nominating committee;
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3. With the sortition so chosen, the honest (and corrupt) parties are selected to the nominating
committee;

4. Each member of the nominating committee selects a holding-committee member, with the
honest ones selecting at random (and corrupted members always selecting other corrupted
members).

Let k1, k2, k3 be three security parameters for the analysis, as follows. We will assume the
adversary can reset the sortition functionality in the process above at most 2k1 times.9 We want to
ensure secrecy except with probability 2−k2 and liveness except with probability 2−k3 . We will use
parameters ε1, ε2, ε3, whose values we will fix later.

Let B1 = fC(1 + ε1); B1 represents the maximum tolerable number of corrupted members in
the nominating committee (note that the expected number is fC). Let B2 = f(1 − f)C(1 + ε2);
B2 represents the number of additional corrupted members in the holding committee (note that
the expected number is f(1 − f)C). We will set the threshold at t = B1 + B2 + 1. Thus, ε1 and
ε2 control the probability that secrecy fails. The parameter ε3, discussed below, will control the
probability that liveness fails. We will now discuss how to set C, ε1, ε2, ε3 to satisfy the following
two conditions:

� Secrecy: Pr[φ ≥ t] ≤ 2−k2 ;

� Liveness: Pr[c− φ < t] ≤ 2−k3 .

The parameter ε1. As described above, the adversary corrupts fN parties, and then resets the
sortition functionality at most 2k1 times to try to get as many of these parties selected to the
nominating committee as it can. The number of corrupted parties in the nominating committee
for each of these 2k1 tries is a binomial random variable Bin(n = fN, p = C

N ). We can set the
parameters C and ε1 so as to ensure that

Pr
[
Bin(fN, CN ) > B1

]
< 2−k1−k2−1,

in which case the union bound implies that

Pr [∃ try with more than B1 corrupted parties selected] < 2−k2−1 .

Using Equation 1, a sufficient condition for ensuring the bound above is to set ε1 and C large

enough so as to get exp
(
−fN · CN ·

ε12

2+ε1

)
< 2−k1−k2−1, or equivalently

C >
(k1 + k2 + 1)(2 + ε1) ln 2

fε12
. (2)

The parameter ε2. We next bound the number of additional corrupted parties in the holding
committee due to Step 4 above. Here we have a total of (1−f)N honest parties, each one is selected
to the nominating committee with probability C/N and then each selected honest party chooses
a corrupted party to the holding committee with probability f . Hence the number of additional

9Since in practice the adversary has very limited time in which to reset the sortition (e.g. less than 5 seconds in
the Algorand network), it may be sufficient to use k1 = 64.
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corrupted party is a binomial random variable with n = (1 − f)N and p = fC/N (and, unlike in
the analysis of ε1, this time the adversary gets only one attempt—there is no resetting, because
the adversary cannot predict how sortition will select honest parties). The expected number of
additional corrupted parties is therefore f(1− f)C, and we get a high-probability bound on it by
setting C and ε2 so as to get

Pr
[
Bin((1− f)N, fCN ) > B2

]
< 2−k2−1.

Here too, we get a sufficient condition by applying Equation 1. For this we need to set ε2 and C

large enough to get exp
(
−(1− f)N · fCN ) · ε22

2+ε2

)
< 2−k2−1, or equivalently

C >
(k2 + 1)(2 + ε2) ln 2

f(1− f)ε22
. (3)

The parameter ε3 and the liveness condition. The conditions from Eqs. (2) and (3) ensure
the secrecy condition except with probability 2−k2 . It remains to set ε3 and C to ensure liveness.
Recall that the liveness condition holds as long as the number of honest members (c − φ) on the
holding committee is at least t. Honest members come to the holding committee as follows: an
honest party (out of (1 − f)N total) gets chosen to the nominating committee (with probability
C/N), and then chooses an honest party (with probability 1− f) to the holding committee. Thus,
the number of honest members is a binomial random variable with n = (1−f)N and p = (1−f)C/N .
(Again, the adversary gets only one attempt, because the adversary cannot predict how sortition
will select honest parties, so resetting doesn’t help.) Since the expected value of this random
variable is (1− f)2C, it is sufficient to ensure that t ≤ (1− f)2C(1− ε3) for some ε3 > 0 such that

Pr[Bin((1− f)N, (1− f)C/N) < (1− f)2C(1− ε3)] < 2−k3 .

By Equation 1, this holds when exp
(
− (1− f)N · (1− f)C/N · ε32/2

)
< 2−k3, i.e.,

C >
2k3 ln 2

(ε3(1− f))2
. (4)

Recalling that our threshold was set to

t = B1 +B2 + 1 = fC(1 + ε1) + f(1− f)C(1 + ε2) + 1 (5)

= C ·
(
(2 + ε1 + ε2)f − (1 + ε2)f

2
)

+ 1,

the condition t ≤ (1− f)2C(1− ε3) is equivalent to:

ε3 ≤
1− (4 + ε1 + ε2)f + (2 + ε2)f

2 − 1
C

(1− f)2
. (6)

Putting it all together. Given the fraction f of corrupted parties and the security param-
eters k1, k2, k3, we need to find some positive values for the other parameters C, ε1, ε2, ε3, t that
satisfy the bounds in Eqs. (2) to (6).

Clearly such positive values that satisfy Eq. (6) only exist when 1− 4f + 2f2 is bounded away
from zero, which means that f must be strictly smaller than f∗ = 1 −

√
0.5 ≈ 0.29. When f
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is bounded below f∗, we can satisfy Eq. (6) by setting the ε’s to (f∗ − f)/c for some moderate
constant c, and then by Eqs. (2) to (4) we get C = Θ((k1 + k2 + k3)/f(1− f)(f∗ − f)2).

For example, the following table lists values of C and t that work for security parameters k1 = 64
and k2 = k3 = 128 and different values of f (along with the ε’s that were used to obtain these C
and t values).

f 5% 10% 15% 20% 25% 30%
C 889 1556 3068 7759 38557 impossible
t 425 788 1590 4028 19727
ε1 4.3835 1.8099 0.9216 0.46059 0.173688
ε2 3.3734 1.4936 0.8001 0.41728 0.163585
ε3 0.4703 0.3752 0.2829 0.18904 0.090453

3.3 Analysis

3.3.1 Complexity.

It is easy to see that the communication complexity of all the protocols in our construction
(sharing, committee-selection, handover, and reconstruction) is some fixed polynomial in the
security parameter, regardless of the number of epochs or the total number or parties N . Indeed
there are only some c = O(λ) parties in every committee, and each of them sends a single message
including at most encryption nd proofs about size-O(c) vectors.

Regarding computation, the only parts of the protocol that involve O(N) objects are random
selection of keys from a size-N public table (provided by the PKI). Every other operation involves
at most size-O(c) objects. Hence in a RAM model also the computation performed by each party
depends only logarithmically on N .

3.3.2 Security.

Below we denote by E3 = E1 ◦ E2 the combination of the PKE schemes E1, E2 as in our scheme: E3
uses the keys from E1 and encrypts a message by choosing a fresh key pair for E2, encrypting the
E2 secret key by the E1 public key, and encrypting the message by the E2 public key.

Theorem 3.1. Let f < 1 −
√

0.5 be a constant, and consider the parameters C = C(λ), t = t(λ)
satisfying equations 2 through 6.

Let E1, E2 be two public-key encryption schemes, E1 is anonymous as per Definition 2.6 and
the combination E3 = E1 ◦ E2 is RIND-SO secure. Also let Π be a NIZK argument system as per
Definition 2.7, and assume the sortition functionality from Fig. 2.

Then the construction in Section 3.1 with parameters C, t is a scalable ECPSS scheme satisfying
secrecy and robust reconstruction (Definitions 2.1 and 2.2), in a model with erasures and the
broadcast channel and PKI from Section 2.1, against polynomial-time mobile adversaries with
corruption budget bounded by f ·N .

Proof sketch. Below we only sketch the secrecy argument, which includes in particular a
proof that the committees are mostly-honest. The robust-reconstruction argument is similar (but
simpler).
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Consider an adversary that specifies two secrets σ0, σ1 and then interacts with our ECPSS
scheme, and we need to argue that it only has a negligible advantage in guessing which of σ0, σ1
was shared. As usual, the proof involves a game between the adversary and a challenger, and a
sequence of hybrids that are proven indistinguishable via reductions to the secrecy of the various
components. Below we tag each of these hybrids with the security property that is used to prove
their indistinguishability from the previous hybrid in the sequence.

H0 (The real protocol). This is a game where the challenger plays the role of all the honest
parties, and in particular knows the global secret and all the shares.

H1 (NIZK Soundness). In the next hybrid, the challenger aborts if at any point the honest
parties accept a proof from the adversary even though the encrypted quantities in question do
not lie on a degree-t polynomial. The challenger can detect this because it knows all the shares
and it sees everything that the honest parties see. It follows from the NIZK soundness that the
challenger only aborts with negligible probability.

H2 (Zero-knowledge). Next the challenger uses the NIZK simulator to generate the honest-party
proofs. Since it is zero-knowledge, the adversary cannot detect the difference.

H3 (Anonymous PKE). In this hybrid the challenger aborts if the holding committee contains
t or more corrupted seats, or fewer than t honest seats. We use the anonymity property of the
long-term PKE to argue that this happens only with a negligible probability.

For this argument, first note that the set of corrupter nominators depends only on the sortition
“ideal functionality,” hence the bound B1 from Section 3.2 holds for it. Next let S be the set of
holding-committee members that were nominated by honest nominators. (More specifically,
nominators that were honest at the time they broadcast their nomination message.) In
Section 3.2 we bounded whp the number of corrupted members from S by the bound B2 in
an information-theoretic model, but now the adversary’s view contains information about the
set S (since the ephemeral keys are encrypted under their long-term public keys). Nonetheless,
due to the anonymity of the PKE scheme E1, with overwhelming probability the adversary only
corrupts B2(1 + o(1)) members of this set.

H4 (PKE secrecy). In this hybrid honest parties switch to encrypting a randomly chosen secret
σ$ rather than the right one σb. We argue that the adversary cannot distinguish these hybrids by
reduction to the hiding property of the combined PKE scheme E1 ◦E2. Note that in this hybrid
we already know that the adversary corrupts less than t members of each holding committees,
so we can re-sample the shares of the honest parties conditioned on those of the corrupted ones.

Finally we can undo the changes in these hybrids, arriving at a game where the adversary gets σ1−b
rather than σb.

4 Parties vs. Stake

In this paper we described the protocol in terms of individual parties, and the adversary’s power
in terms of corruption a fixed fraction of these parties. Our main application domain, however,
is public proof-of-stake blockchains where the adversary’s corruption budget is measured in stake.
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In this world every actual party holds some number of tokens, and the corruption budget of the
adversary is expressed in tokens rather than in parties.

The easiest way of defining the adversary model and protocol actions in this world is to have
a party with x tokens play the role of x parties in the protocol, and leave everything else as-is. If
the party-to-stake mapping was static, then the stake-based adversary model would have been a
weakening of the standard adversary, and hence every protocol that was secure in the party model
against some f -fraction of corrupted parties would remains secure also in the stake model against
f -fraction of corrupted stake. To see that, note that if a party owns x tokens and the adversary
corrupts it, then the adversary is forced to corrupt all the x tokens at once, reducing its ability to
corrupt different parties.

The thing that makes the stake model harder is that the stake assignment is not static, parties
can move the stake among them dynamically. (This can be formulated using a UC-like environment
that provides parties with tokens and move those tokens between them.) In this environment, it is
not a priory clear that the proactive model makes sense at all: This model stipulates that corrupted
parties can recover and join the ranks of honest parties. But when the adversary corrupts a party
holding some stake, can’t it just “take the money and run”? That is, can’t the adversary simply
transfer all the stake of a corrupted party into the adversary’s own coffers, thereafter forever
controlling it?

Making sense of party’s recovery in the stake model hinges on the distinction between keys that
control tokens (called spending/withdrawal keys) and keys that are used in the consensus (called
participation/validation keys): PoS blockchain usually assume that stake-controlling keys are kept
highly secure (e.g., offline, in a hardware device, or using some secret-sharing mechanism), and are
only accessed infrequently. The cryptographic keys used for the protocol, on the other hand, must
be accessed frequently and kept online. This model therefore assumes that the token-controlling
keys are (almost) never compromised, but the consensus keys are easier to corrupt. In that model
a corrupted party is one whose protocol key was compromised, but it can later recover by (cleaning
up the node and) using the token-controlling key to choose and broadcast a new protocol key. It
is instructive to consider the type of corruptions we are likely to confront in a PoS blockchain and
their characteristics.

� Mostly static adversarial base. There may be a set of token keys that are held by the adversary,
and hence their consensus keys remain adversarial throughout. While that set (and the stake
that it holds) is not completely static, it changes rather slowly.

� Somewhat dynamic node corruptions. A second type of adversarial parties represent nodes
where the stake key is held by honest participants but the consensus keys are subject to
compromise due to security breaches. These tend to be more dynamic from the first set,
but corruptions still require significant effort on the part of the attacker. It may be reasonable
to assume that corruption of new nodes usually takes significant time.

� Fully dynamic fail-stop. A third set of “adversarial” nodes are fail-stop nodes, that are just
knocked off due to denial-of-service (DoS) attacks. It seems reasonable to assume that the
adversary can mount a DoS attack almost instantaneously and keep it going for a while.

Hence realistic protocols in PoS blockchains must be resilient to very dynamic DoS attacks, but
can perhaps assume a mobile-but-slow-moving adversary when it comes to malicious corruptions.
The next section sketches a protocol that can tolerate higher corrupted fraction in the face of such
slow-moving adversary.
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5 Applications

The solutions presented in this work are broadly applicable, both in blockchain-specific contexts
and for traditional uses of threshold cryptography. The applications described here all have holding
committee use the secret that it shares to perform some task. This task could be as simple as using
it in a special-purpose protocol for distributed signatures, or as general as using it for generic secure
computation.

Perhaps the most natural application is for signing global blockchain state, such as accounts
state or the content of particular blocks, as describe in the first two examples below. While this type
of information can be validated by inspecting the blockchain itself, a threshold signature backed by
blockchain consensus provides compact validation that saves the need to traverse the blockchain.10

More generally, our techniques can form the basis of a protocol that turns a public blockchain into
a “distributed trusted entity” that can be used as a service for general secure computation.

Blockchain Checkpointing. Blockchain “checkpoints” that validate the state of the blockchain
at some points in time can be used to improve efficiency and security, particularly for initialization
of new nodes joining the network. For example, Leung et al. [LSGZ19] described a “vault” system
that essentially creates a sub-chain of checkpoints over an existing blockchain (e.g. every 1000
blocks), resulting in a dramatic savings in storage and computation. That solution, however,
still has per-checkpoint storage cost proportional to the size of the committees that created that
checkpoints, and moreover the blockchain verification time is still asymptotically linear.

Our technique enables a simpler solution, where the blockchain maintains a secret signature key
and the holding committees use it to sign the blocks. This way, the checkpoints can be compressed
to essentially a single signature that can be validated by anyone with the public key. In more
details the blockchain is associated with a signature key-pair (pkB, skB), where pkB is included in
the genesis block and skB is maintained via our proactive secret sharing protocol. To generate
a checkpoint at an agreed-upon round i, each member j of the current holding committee (that
holds a share σj of a t-of-n Shamir sharing of skB) uses σj to produce a signature share si,j on the
current blockchain state, and propagates si,j to the network. Subsequently, any blockchain user can
combine t shares {si,j} non-interactively and obtain a signature si on the state. Anyone can then
validate the blockchain state just by verifying that one signature. (In particular, a user joining the
network does not need to traverse the blockchain.)

Cross-Blockchain Token Bridge. Another attractive application in the blockchain context
is cross-blockchain validation of transactions or other blockchain state (e.g., for cryptocurrency
conversions, smart contracts that depend on two or more platforms, etc.). Naively, such token
bridges require trusted parties that vouch for the state of one blockchain on the other. Using our
technique, we can have the blockchain vouch for its own state, using the same signature mechanism
from above.

As an example, suppose a user wants to transfer an asset C (e.g., a stablecoin) from a blockchain
A to a blockchain B. Blockchain A would have an account associated with a signature public key
pkA, and the secret key skA would be distributively managed by our secret sharing protocol. To
transfer an asset C, a user would send it to an account managed by pkA. The asset would be locked,

10In essence, this technique turns statements about the state of the blockchain into NP statements with short
witnesses, by having the holding committee sign them.
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and the user can obtain a short signature s under pkA that indeed she locked the asset. The user
can present the asset and signature to a smart contract running on blockchain B. That contract
has pkA hard-wired in it, it can verify that the asset is indeed locked on A just by checking the
signature, and then mint the asset C to the user on B.

Cryptography as a Service. The protocols in this paper can serve as a basis for more general
cryptographic services such as the storage of secrets [Sha79], (proactive) threshold signatures and
decryption [DF89, HJJ+97, Rab98, Bol03], threshold PRFs/VPRFs/OPRFs, [NPR99, JKKX17,
BLMR13], and more. We refer to this as “threshold cryptography as a service”. While such
services can be provided by more conventional systems of a few servers, here the guarantees are
backed by the scale and security of blockchains and the robustness of proactive re-sharing.

Perhaps the simplest example is for storage of secrets, such as the puzzle solution example
from the introduction. The secret can also be a symmetric key to encrypt/authenticate data, or a
private key for a signature scheme, or a PRF key to support a threshold verifiable PRF. Threshold
signature schemes can be deployed for purposes such as certification authorities, authentication of
credentials, notarized services, etc. Another application is a verifiable randomness beacon, e.g., as
used in [ACG+18, HMW18]. Yet another versatile primitive is threshold Oblivious PRFs which
can be used to implement secure storage systems ranging from password-authenticated secrets (e.g.,
custodial services) [JKKX17] to cloud key management [JKR19], private information retrieval and
search on encrypted data [FIPR05], oblivious pseudonyms [Leh19], password managers [SJKS17],
and more.

MPC/obfuscation-as-a-service. An additional area that can make crucial use of threshold
systems is multi-party computation (MPC). As it happens, our handover protocol is similar in
many ways to the information-theoretic multiplication protocol from [GRR98]. This observation
can be used to implement generic secure computation, letting the current committee pass to the next
one the sum/product of two secrets (as opposed to just passing the individual secrets themselves).
Hence the blockchain can carry out arbitrary computation on behalf of its clients, without leaking
anything but the end result. In effect, it lets the blockchain act as a trusted party.

A particularly powerful form of MPC-as-a-service is using threshold decryption of homomorphic
encryption [BGG+18], which would enable applications akin to program obfuscation: Clients can
encrypt their programs, anyone could apply these encrypted programs to arbitrary inputs, and
the blockchain could decrypt the result (when accompanied by appropriate proofs). More limited
in scope but with more practical implementations, threshold decryption of linearly-homomorphic
encryption enable varied applications such as private set intersection [FNP04], asset management
and fraud prevention [GKB+19], and many more.

6 Static vs. Adaptive Anonymous PKE

Recall the definition of Bellare et al. for anonymous PKE against static adversaries:

Definition 6.1 (Anonymity [BBDP01]). A PKE scheme E = (Gen,Enc,Dec) is anonymous if
polynomial-time adversaries have at most a negligible advantage in the following game with a
challenger:
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1. The challenger runs the key generation twice to get (pki, ski) ← Gen(1λ, $) for i = 0, 1, and
sends pk0, pk1 to the adversary.

2. The adversary responds with a plaintext message m. 11

3. The challenger chooses a secret bit b, encrypts m relative to pkb to get ct ← Encpkb(m), and
sends ct to the adversary.

4. The adversary outputs a guess b′ for the bit b.

The advantage of the adversary is 2 · |Pr[b = b′]− 1
2 |.

We would like to prove Conjecture 1, that every PKE that satisfies Definition 6.1 also satisfies
Definition 2.6. Namely, that an adversary that sees n keys and m < n ciphertexts encrypted under
some of them, and can open upto fn of the keys to learn the secret key, cannot open many more
than fm of the keys that were used to encrypt those ciphertexts. The difficulty with exhibiting a
reduction is that the adversary is adaptive: it can choose which keys to open after it sees all the
keys and ciphertexts. The reduction, on the other hand, has to decide ahead of time where to put
the public keys that it is challenged on, and will have to abort if the adversary asks to open these
keys.

While we were not able to prove this conjecture, below we prove a special case of it for restricted
class of adversaries that “open” all the keys at once. That is, given the n public keys and m
ciphertexts (λ ≤ m < n), the adversary outputs a set D of ` = f ·n keys that it wants to open, and
it gets all the secret keys for it at once. Note that this “semi-adaptive” adversary already exhibits
all the problems with selective opening in the context of secrecy. In particular the examples showing
that semantic security does not imply security under selective opening, apply also to these restricted
adversaries.

Lemma 6.1. Fix a constant ε > 0. If there is an efficient semi-adaptive adversary that opens at
most ` = fn keys but is able to open t∗ = (1+ε)fm keys in A with a noticeable probability α = α(λ),
then the PKE in use does not satisfy Definition 6.1.

Proof. Fix an adversary A, denote by A the set of public keys under which messages were encrypted
and by D the set of keys that A opens, and let pi be the probability of |D∩A| = i for that adversary
(for all i = 0, 1, . . . ,m). The premise of the lemma is that

∑
i≥t∗ pi = α = 1/poly(m).

We describe a reduction that uses this adversary in the anonymous-PKE game from Defini-
tion 6.1. The reduction has a parameter τ ≤ m− 1, and it gets two keys pk0, pk1 and a ciphertext
ct encrypted under one of them. It chooses n − 2 more keys, selects a random subset A′ ⊂ [n] of
size m − 1, and encrypts messages under the keys in A′. The reduction then gives the adversary
the n keys and m ciphertexts (in random order), and gets from the adversary the set D of ` keys
to open. If |A′ ∩D| ≥ τ and in addition pk1 is opened but pk0 is not, then the reduction outputs 1.
Otherwise the reduction outputs 0.

Let x denote the key under which the message is encrypted (pk0 or pk1), and y denote the
other key (pk0 or pk1, respectively). See Fig. 3 for a graphic depiction of it. The crux of the

11This message need not be in the plaintext space relative to these keys. Note that in that case the anonymity
property implies that the scheme could also “encrypt” things outside of its plaintext space (although the result may
not be decryptable).
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Figure 3: The structure of our reduction

proof is showing that when the probability distribution (p0, p1, . . . , pm) is far from an (n,m, `)-
hypergeometric distribution, there must exist some τ for which

δτ
def
= Pr[reductionτ outputs 1|x = pk1]− Pr[reductionτ outputs 1|x = pk0]

is non-negligible (in m). Recall that the (n,m, `)-hypergeometric distribution is (p∗0, p
∗
1, . . . , p

∗
m)

such that

p∗i
def
=

(
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)(
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)
/

(
n
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)
.

Observe that when x = pk1, the reduction with τ outputs 1 if |D ∩A| ≥ τ + 1 (i.e., ≥ τ for A′

and one more for pk1), and in addition x = pk1 ∈ D and y = pk0 /∈ D. Hence

Pr[reductionτ outputs 1|x = pk1] =

m∑
i=τ+1

pi ·
i

m
·
(
1− `− i

n−m
)
. (7)

On the other hand when x = pk0, the reduction with τ outputs 1 if |D ∩ A| ≥ τ , and in addition
y = pk1 ∈ D and x = pk0 /∈ D. Hence

Pr[reductionτ outputs 1|x = pk0] =

m∑
i=τ

pi ·
(
1− i

m

)
· `− i
n−m

. (8)

Let us denote ui = i
m · (1−

`−i
n−m) and vi = (1− i

m) · `−i
n−m . From Eqs. 7 and 8 we have

δτ = − pτvτ +

m∑
i=τ+1
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(
−pτ

(
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m

)
+

m∑
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( i
m
− `

n
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· m

n−m
, (9)

where the last equality follows because
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i

m
· n−m− `+ i

n−m
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m
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n−m

=
( i
m
− `

n

)
· m
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.
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Equation 9 yields a set of linear equations for expressing ~δ = (δ0, δ1, . . . , δm−1) in terms of ~p =
(p0, p1, . . . pm). Let B be the m×(m+1) matrix representing these equations, namely ~δ = ~p ·B. We
observe that the (n,m, `)-hypergeometric distribution is the only probability distribution yielding
~pB = ~0. To see this, note that an adversary that chooses the set D at random among the n keys
induces the (n,m, `)-hypergeometric distribution on |D∩A|, and for that adversary we have δτ = 0
for all τ . Moreover, it is easy to see that the matrix B above has full rank m. Hence the solution
space for ~pB = ~0 is of the form ρ · ~p∗, where ~p∗ is the (n,m, `)-hypergeometric distribution and ρ
is a scalar. Clearly, the only vector in this space whose entries sum up to 1 is ~p∗ itself.

As the distribution ~p of the adversary A differs from ~p∗ (since α is noticeable), we thus have
~δ 6= 0. We still need to prove, however, that ~δ is noticeably far from zero. To that end, we look
again at Equation 9 and give a name to the sum at the right-hand side. For every τ we denote:

γτ
def
=

m∑
i=τ

pi
( i
m
− `

n

)
=

m∑
i=τ

pi
( i
m
− f

)
and similarly γ∗τ

def
=

m∑
i=τ

p∗i
( i
m
− f

)
.

Equation 9 can now be written as δτ = m
n−m(γτ+1−pτ (1− τ

m)), and of course by definition we have
γτ = pτ ( τm − f) + γτ+1. We similarly have γ∗τ = p∗τ ( τm − f) + γ∗τ+1, but here γ∗τ+1 − p∗τ (1− τ

m) = 0.
Note also that for τ ≥ fm the term τ

m − f is non-negative. We next use the following two facts:

� By Chernoff bound, γ∗t∗ <
∑

i≥t∗ p
∗
i is exponentially small in εf ·m = Θ(m).

� By our assumption on the adversary γt∗ is non-negligible since

γt∗ =
∑
i≥t∗

pi
( i
m
− f

)
≥
∑
i≥t∗

pi
( t∗
m
− f

)
= εf

∑
i≥t∗

pi = εfα.

This means that γt∗ is exponentially (in m) larger than γ∗t∗ , i.e. there exists some constant η > 0
such that γt∗ ≥ (1 + η)mγ∗t∗ .

By the Claim 6.1.1 below, we either have pt∗−1 ≥ (1+η)m(1− η
2 )p∗t∗−1, or else δt∗−1 >

ηm
2(n−m)γt∗ ,

which is non-negligible (in m). In the former case (of large pt∗−1) we get

γt∗−1 = pt∗−1(
t∗ − 1

m
− f) + γt∗ ≥ (1 + η)m(1− η

2
)p∗t∗−1(

t∗ − 1

m
− f︸ ︷︷ ︸

>0

) + (1 + η)mγ∗t∗

> (1 + η)m(1− η

2
)(p∗t∗−1(

t∗ − 1

m
− f) + γ∗t∗)

= (1 + η)m(1− η

2
)γ∗t∗−1.

In that case we can apply Claim 6.1.1 again to conclude that either pt∗−2 > (1 + η)m(1− η
2 )2p∗t∗−2

or else δt∗−2 is non-negligible. Repeating this process, we show by induction that either at least
one of δt∗−1, δt∗−2, . . . , δfm is non-negligible (in m), or else we have

∀i ∈ [fm, t∗ − 1], pi > (1 + η)m(1− η

2
)t
∗−i.

But the last case cannot happen, since it means that the pi’s sum up to more than one. That is
so because the hypergeometric distribution has probability at least 1/4 of exceeding the expected
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value [GM14],12 i.e.,
∑

i≥fm p
∗
i ≥ 1/4, and so

m∑
i=0

pi ≥
t∗−1∑
i=fm

pi +

m∑
i=t∗

pi ≥
t∗∑

i=fm

(1 + η)m(1− η/2)t
∗−ip∗i + (1 + η)m

m∑
i=t∗

p∗i

> (1 + η)m(1− η/2)m
∑
i≥fm

p∗i >
(
1 + η/4

)m · 1

4
> 1.

This concludes the proof.

Claim 6.1.1. For any τ ≥ fm, denote the ratio Rτ+1
def
= γτ+1/γ

∗
τ+1 and let η > 0 be an arbitrary

constant. Then either pτ > Rτ+1(1− η
2 )p∗τ , or else δτ ≥ ηm

2(n−m)γτ+1.

Proof. Recall that for the hypergeometric distribution we have γ∗τ+1 = p∗τ (1− τ
m), and by definition

of Rτ+1’s we have γτ+1 = Rτ+1γ
∗
τ+1. Assume that pτ ≤ Rτ+1(1− η

2 )p∗τ , and we need to show that
δτ ≥ ηm

2(n−m)γτ+1. By Equation 9 we have

δτ ·
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m

= γτ+1 − pτ (1− τ

m
) ≥ Rτ+1γ

∗
τ+1 −Rτ+1(1−

η

2
)p∗τ (1− τ

m
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+
η

2
·Rτ+1 · p∗τ (1− τ

m
) =

η

2
·Rτ+1γ

∗
τ+1 =

η

2
· γτ+1.

Hence δτ ≥ ηm
2(n−m)γτ+1, as needed.

6.1 The fully-adaptive setting

In the fully adaptive setting, the adversary can open the keys one at a time, rather than all at
once. Trying to apply the same reduction as above, the reduction no longer knows the full set
of opened keys, since it has to abort once the adversary asks to open one of the two challenge
ciphertexts (because it cannot answer that query). The reduction in this setting needs to decide
on its output based on which of the two challenge keys was opened (if any), and how many of the
keys in A′ and outsidse of A′ were opened at the time that the challenge key was requested. To
prove the conjecture, we would have to show that for any adversary that has significant probability
of opening more than t∗ keys in A, there is a decision rule that yields significant advantage for the
reduction.

As opposed to Lemma 6.1 where the adversary’s strategy can be characterized by the
probabilities pt of opening t keys in A, here the adversary has much more freedom in choosing
not just if but when to open certain keys. Specifically, in the event that exactly t keys from A are
opened, we can consider the keys outside of A as residing in t+2 buckets: Buckets Bt,0, Bt,1, . . . , Bt,t
are the non-A keys that are opened after exactly 0, 1, . . . , t keys from A, respectively, and Bt,∞ are
the non-A keys that are never opened. An adversary strategy is now characterized by the same
pt’s as above, but in addition also by the expected sizes of the buckets Bt,j . (Hence we need O(m2)
variables to describe the adversary, as opposed to O(m) in the analysis in Lemma 6.1.)

12The proof in [GM14] is for the binomial distribution, but for our case of m � n we get the same result upto a
factor of 1± o(1).
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A plausible approach is to adopt the decision rule from Lemma 6.1, where the reduction
outputs 1 if pk1 is opened (and pk0 is not) and there are more than some threshold τ of other
keys in A′ that are opened before pk1. Trying to analyze the advantage of δτ of this reduction (with
parameter τ) we can express it in terms of the O(m2) variables from above. We get terms similar
to above that correspond to the probability that only x or only y is opened, but also other terms
corresponding to the case where both are opened, either x before y or vise versa. Unfortunately
we were not able to analyze the resulting system of equations.
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A A Variant with Higher Resilience in a Weaker Adversary Model

As we explained in Section 3, an adversary controlling f fraction of the stake can control roughly 2f
fraction of the holding committee, so we need the threshold value to be ti ≈ 2f · ci, and we need
need at least ti honest parties to recover the secret. It follows that our scheme can only handle
corruption of about roughly quarter of the parties (or stake).

One could hope to get a solution with higher resilient by having the nomination committee use
sortition to select their nominees, and prove that they did so properly. In that case, a corrupted
member of the nominating committee is no longer free to select anyone it wants to the holding
committee, so we can hope that it will often be forced to select an honest member. As we explained
in the introduction, however, in our mobile adversary model this extra restriction does not help:
Even if a corrupted member of the nominating committee must use sortition to select a member of
the holding committee, if that member happens to be honest then the adversary can simply corrupt
it right then and there.

To make use of this additional restriction on the nomination process, we must therefore assume
that the adversary, while mobile, cannot move too quickly. Specifically, we must assume that a
attempted corruption that begins during the i’th period cannot be completed until after the end
of the handover protocol in period i+ 1.

But for such a slow-moving adversary, we can use even a simpler protocol: The holding
committee can simply self-select, then announce themselves publicly, and then use any proactive
secret sharing protocol from the literature (for dynamic committees) to pass the secret from one
holding committee to the next. Indeed, such a slow-moving adversary will not be able to corrupt
the next holding committee until after they already passed the secret to the committee after them.

But is this slow-moving adversary model a realistic one? We claim that it is not: While fully
corrupting a target may be a slow process, the adversary can quickly mount DoS attacks on members
of the holding committee if it knows who they are. As discussed in Section 4, a more realistic model
will allow the adversary to cause a fail-stop failures instantly, while limiting the speed at which it
can fully corrupt a party. In this model, it makes sense to require that the nominating committee
use sortition to select their nominees, and then prove that they did it properly.

Observe that since we want to maintain the anonymity of the holding committee, then the
nominating committee proofs cannot simply reveal their VRF values (as those will let anyone
compute the identity of their nominee). Instead, each nominator will choose its ephemeral keys as
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in our protocol from Section 3, then prove that “there exists a member j such that the ciphertext
contains an encryption of the ephemeral secret key under the public key of member j, and moreover
j is the member selected by sortition”. While this is an NP statement, it is not a short one anymore,
indeed its length is linear in the number of parties N in the system. The communication can still
be made scalable using SNARKs, but the work of the provers must be at least linear in N .

Anonymous PKE with randomizable keys. But the above is still not enough, in the variant
described so far the nominator knows the ephemeral secret key of its nominee, so in particular it
can recover its share of the global secret just like the nominee itself can. We therefore must replace
our use of anonymous encryption by a stronger primitive, that we call anonymous PKE with key
randomization. Namely, we assume that given the long-term public key pk of some party, anyone
can generate a derivative public-key pk′ such that:

1. no one can recognize that pk′ was generated for pk,

2. Given pk′, anyone can encrypt a message which would be decryptable by the secret key of pk
and we have the usual semantically security, even against the party that generated pk′.

Instantiations. It is not hard to see that anonymous PKE with key randomization (against
static adversaries) can be constructed from DDH and LWE: Roughly the derivative key will be
an encryption of zero under the long-term key, which can be utilized for encryption using the
homomorphism of these cryptosystems.

Specifically, for the DDH-based variant we can use Elgamal encryption where the long-term
public key is a pair g, h = gx) and the corresponding secret key is x. To randomize this key, one
chooses another random integer y and output the derivative key (a, b) = (gy, hy). Clearly, under
DDH (a, b) are pseudorandom even given (g, h), yielding the anonymity property that we need. On
the other hand (a, b) is itself an Elgamal public key relative to secret key x, so it can be used for
encryption.

For the LWE-based variant we use Regev encryption, where the public key is a pseudorandom
matrix A (with many more columns than rows), and the corresponding secret key is a vector
~s = (~s′| − 1) such that ~sA = ~e (mod q) with ‖~e‖ � q. To randomize the key, one chooses a
low-norm square matrix R (say over {0,±1}) and output A∗ = A×R (mod q).

Using the fact that A is pseudorandom and the leftover hash lemma, it is easy to see that A∗

is pseudorandom even given A, yielding the anonymity property that we need. On the other hand
it still a valid public key relative to the same secret key ~s, since

~sA∗ = ~sAR = ~eR with ‖~eR‖ ≤ ‖~e‖ · ‖R‖ � q.

Hence A∗ can be used for encryption.

A.1 Reworking the Parameters

Assuming the protocol from above and a slow-moving adversary, what fraction of the holding
committee can an adversary corrupt if it controls an f fraction of the overall stake? In this model,
a corrupted member of the nominating committee cannot freely choose its nominee but must use
sortition instead, and it also cannot corrupt the nominee if it is honest. However, if the would-be
nominee is honest then the corrupted nominator can just refrain from nominating altogether.
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Under this attack scenario, if the overall fraction of corrupted parties is f and we have a
nominating committee with c members of which f · c are corrupted, then the expected membership
of the resulting holding committee would be c · (1− f + f2) (i.e., all the nominees of honest parties
and only f fraction of the would-be nominees of corrupted parties). Of these members, we expect
the number of corrupted parties to be c ·f (since each nominator has an f fraction chance of hitting
a corrupted nominee). Hence the fraction of corrupted parties in the holding committee would be
about f/(1 − f + f2). Since we need this fraction to be strictly smaller than 1/2, we get the

constraint f
1−f+f2 <

1
2 , i.e., f < 3−

√
5

2 ≈ 0.38, which is better than the 0.29 resilience that we have

with our main protocol. (Of course this is an inaccurate estimate since all these numbers are just
expectations, but replacing expectations by high-probability bounds does not make a significant
difference.)
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