
Post-Quantum Verifiable Random Function from
Symmetric Primitives in PoS Blockchain

Maxime Buser1, Rafael Dowsley1, Muhammed F. Esgin1,2,
Shabnam Kasra Kermanshahi3, Veronika Kuchta4, Joseph K. Liu1,

Raphaël C.-W. Phan5,1, Zhenfei Zhang6

1 Monash University, Australia
2 CSIRO’s Data61, Australia
3 RMIT University, Australia

4 University of Queensland, Australia
5 Monash University, Malaysia

6 Ethereum Foundation, Australia

Abstract. Verifiable Random Functions (VRFs) play a key role in
Proof-of-Stake blockchains such as Algorand to achieve highly scalable
consensus, but currently deployed VRFs lack post-quantum security,
which is crucial for future-readiness of blockchain systems. This work
presents the first quantum-safe VRF scheme based on symmetric prim-
itives. Our main proposal is a practical many-time quantum-safe VRF
construction, X-VRF, based on the XMSS signature scheme. An innova-
tion of our work is to use the state of the blockchain to counter the unde-
sired stateful nature of XMSS by constructing a blockchain-empowered
VRF. While increasing the usability of XMSS, our technique also enforces
honest behavior when creating an X-VRF output so as to satisfy the fun-
damental uniqueness property of VRFs. We show how X-VRF can be used
in the Algorand setting to extend it to a quantum-safe blockchain and
provide four instances of X-VRF with different key life-time. Our exten-
sive performance evaluation, analysis and implementation indicate the
effectiveness of our proposed constructions in practice. Particularly, we
demonstrate that X-VRF is the most efficient quantum-safe VRF with a
maximum proof size of 3 KB and a possible TPS of 449 for a network of
thousand nodes.

1 Introduction

Blockchain technologies have attracted tremendous attention from the research
and industrial community. This immense interest ensues from their great promise
and the expansion of cryptocurrencies such as Bitcoin or Algorand. Early
blockchain systems (e.g., Bitcoin) are based on Proof-of-Work (PoW). This is es-
sentially a consensus mechanism that enables a “lottery” among the miners where
the winner gets the reward and decides how to extend the blockchain (i.e., adds
the next block). The winner is elected as the first node who solves a difficult
computational puzzle. Due to the costly nature of PoW thus less environmen-
tally sustainable, an alternative consensus mechanism based on Proof-of-Stake

(PoS) has gained popularity [2]. The assumption behind PoS is that the majority
of the wealth in the system is controlled by the honest participants. In contrast,
PoW considers that the majority of the computing power belongs to the honest
participants.

An important cryptographic primitive that many PoS solutions rely on for se-
curity is Verifiable Random Functions (VRFs). VRFs can also be used in different
blockchain applications as described in later sections. Despite their usefulness, a
significant concern regarding the currently deployed VRF solutions is that they
are susceptible to attacks by powerful quantum computers. Major recent ad-
vances [10] in quantum computing technologies have increased the importance
of research in the domain of post-quantum cryptography, i.e. schemes that re-
sist attacks from scalable quantum computers. Indeed, such quantum computers
can break the currently used classical cryptosystems such as RSA and discrete
logarithm based systems, including ECVRF deployed in Algorand.

In light of the increasing importance of quantum-safe cryptographic solu-
tions, researchers have also been focusing on making tools used in blockchain to
be quantum-safe. For example, Esgin et al. [12] designed a quantum-safe VRF
scheme based on lattice-based cryptography, named LB-VRF. Despite being a
significant step forward in making post-quantum VRFs practical, this scheme has
a major drawback. In particular, it requires constant key updates since a key pair
can just be used to generate only a few VRF outputs (e.g. their most efficient
scheme just has a single output). This requirement of constant key updates leads
to further complications to accommodate for the weaker VRF functionality.

Our goal in this work is to overcome such challenges in this only-known prac-
tical post-quantum VRF scheme [12], by introducing a VRF construction based
solely on symmetric primitives. In addition to being more efficient than prior
post-quantum schemes and supporting much longer key lifetime, our approach
is based the safest post-quantum cryptography alternative. Indeed, symmetric
primitives have been defined and standardized for decades, hence boosting con-
fidence in using them. Other post-quantum candidates such as multivariate or
lattice-based cryptography are relatively new and may more likely be broken
when more cryptanalytic efforts are undertaken [4]. We proceed to discuss VRFs
in more detail and how they are employed in the blockchain.

1.1 Verifiable Random Function (VRF)

Micali et al. [24] introduced the concept of VRF, a variant of Pseudorandom
Functions (PRFs) satisfying a verifiability property. This means that the knowl-
edge of a secret key enables to evaluate the pseudorandom function and prove
the correctness of such evaluations without revealing the secret key or compro-
mising the function’s pseudorandomness. In more detail, a VRF is associated
with a secret key skVRF and the corresponding public key pkVRF, which can be
used to verify the VRF output. Using the secret key skVRF, a user can compute
the function (yVRF, πVRF) ← VRFEval(skVRF, x) at some input x and generate a
corresponding proof πVRF of the correct computation of yVRF. The proof πVRF can
be verified using pkVRF (and public parameters). Additionally to the pseudoran-

2

domness and verifiability properties, a secure VRF should also satisfy the notion
of uniqueness. This means that under a fixed public key and a fixed VRF input
x, there cannot exist valid proofs π̃VRF of correct computation corresponding to
two distinct VRF output values yVRF 6= ỹVRF.

1.2 VRFs in the Blockchain

VRFs are widely used in PoS blockchains to conduct secret cryptographic sor-
tition. These include electing block proposers and voting committee members
[13,23,9,16,8,17] as well as various applications in smart contracts such as online
lottery. Our focus VRF application in this paper is the cryptographic sortition
in the blockchain.

Cryptographic sortition is an innovation of Algorand which enables a set of
users to select themselves to participate in Algorand’s consensus protocol in a
private manner. That is, they are not identified to anyone else; including poten-
tial adversaries [1]. The committee-based consensus protocol proposed by Gilad
et al. [13] for Algorand leverages on a VRF to implement cryptographic sortition.
Moreover, the VRF arrangement in Algorand enables fair private non-interactive
random selection of committee members, weighted by their account balances.7
This random selection of committee members in Algorand also prevents attack-
ers from targeting a specific committee member. Additionally, the use of a VRF
in Algorand’s consensus protocol provides scalability and performance required
to support millions of users. The core of Algorand’s blockchain is a Byzantine
Agreement protocol that is executed among a small randomly chosen committee
of users for each round [13]. More precisely, this protocol makes use of a VRF in
the following way. Each user holds a secret/public key pair (skVRF, pkVRF). Let B
be a block to be added. Each user should take the following steps to determine
whether she is part of the committee [15]:

1. Compute (yVRF, πVRF)← VRFEval(skVRF, Q) for the user secret key skVRF and
a publicly known random seed Q and output a pseudorandom value yVRF and
a proof of correct computation πVRF.

2. Check if yVRF is in the target range [0, P], where P is a parameter that
depends on the current stake of the user. If this condition holds, the user
will be a committee member for B.

The committee membership can be verified by all users in Algorand’s network
by executing the verification algorithm of the VRF with pkVRF, Q, yVRF and πVRF
as input, and additionally checking if yVRF ∈ [0, P]. Algorand instantiates their
protocol with a long-term (practically unlimited) stateless VRF based on elliptic
curves (ECVRF). Similarly, Ouroboros Praos [8] conducts a private test that is
executed locally using a VRF to determine whether a participant belongs to the
slot leader set for any slots within a specific time period.

The uniqueness, pseudorandomness and provability properties of the VRF
play crucial roles in preventing brute-force attacks that try various output values
7 A user would not benefit from having/creating multiple accounts.

3

yVRF in order to find one that falls within the desired range. Particularly, a user
with access to the secret key cannot create multiple valid yVRF values (thanks to
uniqueness) and, also it is infeasible for an adversary to predict yVRF in advance
(thanks to pseudorandomness). Moreover, the committee membership procedure
as well as its verification are computationally inexpensive, making the consensus
protocol highly scalable.

1.3 Our Contributions

As mentioned above, our goal in this work is to introduce an efficient post-
quantum VRF solution that overcomes the drawbacks of prior state-of-the-art
schemes. In particular, our contributions can be summarized as follows:

– Post-quantum VRF X-VRF: We introduce a practical many-time
‘blockchain-empowered’ post-quantum VRF, called X-VRF (see Section 4).
It is built only from symmetric primitives, particularly XMSS signature. We
avoid the need for a stateless signature by utilizing the state of the blockchain
(i.e., block number) as a counter. This approach makes the VRF stateless
from a user’s point of view. In fact, the blockchain’s block number, which is
already maintained by and available to all users, is the only state informa-
tion required for our application of X-VRF. We provide a technical overview
of our approach in the next section.

– “Naive” post-quantum VRF: For a good viewpoint of comparison, we
also introduce a naive post-quantum VRF scheme that combines a PRF with
a non-interactive zero-knowledge proof (NIZK) of correct evaluation (see
Section 3). We pick the NIZK based on the proof system in [22] which also
uses symmetric primitives and thus is fair to our comparison. As expected,
this proposal yields a stateless VRF construction, which we call SL-VRF.
It is significantly more costly in terms of computation and communication
in comparison to X-VRF while being long-term and stateless. We discuss (in
Section 6) how SL-VRF can be deployed in conjunction with X-VRF to exploit
the advantages of each proposal. Particularly, SL-VRF can be deployed as a
fall-back option thanks to its (practically) unlimited key lifetime.

– Implementation and performance evaluation: We implement X-VRF
under different settings and provide a thorough evaluation analysis that
shows its efficiency and practicality (see Section 5). All of our settings provide
a very efficient performance: the computation time for both the evaluation
and verify functions is less than 1 ms. A user public key and a secret key are
just 64 bytes and 132 bytes, respectively, while the proof size is only around
3 KB for all settings. The main difference between X-VRF instances is the
trade-off between (one-time) key generation runtime, memory requirement
and the lifetime of a key pair. Our experiments show that SL-VRF is 500 to
5000 times slower than our X-VRF in evaluation and verification, while the
proof size is also 13 times larger than our X-VRF (see Table 1).

– Integration to Algorand: We integrate X-VRF into the Algorand
blockchain and compare our result with the only practical post-quantum

4

VRF, namely LB-VRF [12], to demonstrate the practicality of our X-VRF
(See section 6). To support 100 nodes in the blockchain system, our VRF
can achieve almost 1000 transactions per second (TPS). If we increase the
number of nodes to 1000, our VRF can still achieve around 500 TPS. Our
integration demonstrates that all X-VRF settings offer a better TPS than
LB-VRF and additionally providing a practically long to ultra long key life-
time, ranging from 45 hours to 20 years, while the LB-VRF key life-time is
only of 5 seconds (see Table 2).

1.4 Our Approach

Deterministic XMSS [6], presented in Appendix A.3, is a good candidate for the
construction of a post-quantum VRF. The main reason is that it is the most
efficient post-quantum signature scheme constructed from symmetric primitives
in terms of signature size. XMSS employs a hash tree, where each leaf uses
a one-time signature scheme called WOTS+ [19]. WOTS+ is by construction
unique (i.e., for any fixed message and public key, one can only create a single
valid signature). However, by itself, deterministic XMSS does not satisfy the
fundamental uniqueness property of a VRF. This is since a user can use different
tree leaves (that is, different WOTS+ keys) to construct a new XMSS signature
for the same message. Thus, it is obvious that a user can generate two different
valid XMSS signatures for a single message.

To satisfy the uniqueness of XMSS, we need to force the user to use a pre-
determined WOTS+ key pair in signing. For this, we make use of the blockchain
state, i.e., empower XMSS with blockchain. In particular, the block number of a
particular round in the blockchain consensus can serve as a global counter. This ,
can be used to force users to use a specific WOTS+ key pair at each round. More
precisely, at block number K, when verifying the XMSS-based VRF output, the
verifier also checks that the leaf index indicated by the authentication path is
consistent with K (see Figure 1). As a result, this ensures that the user cannot
choose between different WOTS+ keys and also allows users to avoid maintaining
a local state. We formally prove that our X-VRF constructed from this approach
satisfies all security requirements of a VRF. On the other hand, due to the com-
putational/storage cost of creating and storing a big hash tree, X-VRF cannot
be used to create, say, 264 outputs as each output consumes one leaf. We in-
vestigate various X-VRF instances with trade-offs between computation, storage
and lifetime of an X-VRF key pair. For example, the X-VRF-27 (with 227 leaves)
construction offers a key lifetime of more than 20 years in the Algorand setting
and hence can be seen as long-term VRF, though it requires a relatively long
(around 2 days on a single core) one-time key generation process. Of course, this
process can be optimized using standard techniques such as parallel processing
or delegating computation.

In the rest of the work, we formally define VRFs, and commence by presenting
our “naive” VRF proposal, SL-VRF. Then, our main constructions, X-VRF, is
presented, followed by our implementation and evaluation results. We finally
discuss the integration of our proposals to Algorand.

5

2 Verifiable Random Function (VRF)

This section formally defines the concept of VRF and its security requirements.

Definition 1 (Verifiable Random Function (VRF) [24]). A VRF with
input length `(λ) and output length m(λ) consists of the following polynomial-
time algorithms:

ParamGen(1λ): On input the security parameter 1λ, this probabilistic algorithm
outputs some global, public parameter ppVRF.

KeyGen(ppVRF): On input public parameter ppVRF this probabilistic algorithm
outputs two binary strings, a secret key skVRF and a public key pkVRF.

VRFEval(skVRF, x): On input a secret key skVRF and an input x this algorithm
outputs the VRF value VRF and the corresponding proof πVRF proving that yVRF
was correctly computed.

Verify(pkVRF, yVRF, x, πVRF): On input (pkVRF, yVRF, x, πVRF) this probabilistic al-
gorithm outputs either YES or NO.

A secure VRF satisfies the following properties:
Provability: If (yVRF, πVRF) is the output of VRFEval(skVRF, x), where
pkVRF, skVRF are honestly generated, then: YES← Verify(pkVRF, yVRF, x, πVRF).
Pseudorandomness: Let A = (A1,A2) be a polynomial-time adversary playing
the experiment ExpprA presented in Fig. 2. A VRF achieves pseudorandomnes iff
Pr[ExpprA = 1] < 1/2 + negl(λ).
Uniqueness: No values (pkVRF, yVRF,1, yVRF,2, x, πVRF,1, πVRF,2) can satisfy
Verify(pkVRF, yVRF,1, x, πVRF,1) = Verify(pkVRF, yVRF,2, x, πVRF,2) = 1, when
yVRF,1 6= yVRF,2

Note: In contrast to the unconditional uniqueness property defined in [24], our
VRF constructions satisfy computational uniqueness, where the running time of
the adversary attacking the uniqueness property is polynomially bounded. This
stems from the fact that we rely on the collision-resistance of a hash function.

3 SL-VRF: Stateless Verifiable Random Function from
PRF and NIZK

We adopt the idea of instantiating a VRF from a PRF+NIZK construction which
was introduced in [14]. Recent works like [7,22] allow to prove knowledge of a
secret key k that generates y ← PRF(k, x) while preserving the secrecy of k,
using only symmetric primitives; where x, y are public information. This means
that PRF is an arithmetic circuit like a block cipher or a hash function. The
current state of the art is the NIZK scheme of Katz et al. (KKW) [22] which
is at the heart of the post-quantum security of the digital signature Picnic [7]
submitted to the NIST standardization process.

The KKW NIZK protocol [22] proves the knowledge of a secret key without
revealing any information about it, based on the input and outputs of a binary

6

circuit like a PRF or a block cipher. KKW is instantiated using the concept of
MPC-in-the-head introduced in [20]. MPC-in-the-head simulates a multi-party
computation of the circuit between P parties. Then to prove the knowledge of
the secret key, the protocol reveals the views of all parties except one. The proof
is verified by recomputing the output based on the view of P − 1 parties.

The size of the proof depends directly on the number of parties P of the
MPC protocol. In the circuit, there are four different operations: Addition with
a public constant, addition of values computed by all parties ("OR" gates),
multiplication with a constant and multiplication of values computed by all
parties ("AND" gates). Only the last one requires communication between the
parties to be performed. This means that the proof contains the views of P − 1
parties for each "AND" gate of the circuit, and therefore its number needs to be
optimized. For this reason, KKW works with the block cipher LowMC [3] which
is a cryptographic primitive with low multiplicative complexity, i.e. low number
of multiplications in a circuit ("AND" gates).
Ensuring Uniqueness. The idea behind our stateless VRF construction is to
use the block cipher LowMC as a PRF to generate the random outputs and
then prove with KKW the knowledge of the secret key skVRF. In other words,
taking a message x as an input, a user generates the corresponding pseudoran-
dom outputs y ← PRF(skVRF, x) and then uses the KKW protocol as the VRF
proof. KKW protocol is made non-interactive using the Fiat-Shamir transform.
However, KKW allows to prove the knowledge of the secret key that generates y
from the public x without requiring the use of the public key linked to the secret
key skVRF. This causes a problem for the uniqueness of the VRF. Indeed, a user
could generate a different value y′ for the same input x using another secret key
skVRF

′. Therefore, we modify the public key as follows: pkVRF is now composed
of two elements pkVRF1 and pkVRF2 such that pkVRF2 ← PRF(skVRF, pkVRF1). The
evaluation procedure will prove that the secret key which generated y from x is
the same as that which generated pkVRF2 from pkVRF1. Thus it is infeasible for
a malicious user to change its secret key in order to generate another output of
the VRF.

3.1 SL-VRF from PRF+NIZK Construction

ParamGen(1λ) : Pick a collision-resistant hash H : {0, 1}∗ → {0, 1}n (for
the Fiat-Shamir transform) and a Pseudorandom function PRF : {0, 1}∗ ×
{0, 1}n → {0, 1}n. Output public parameters ppVRF = (H,PRF).

KeyGen(ppVRF) : On input public parameters computes skVRF
$←− {0, 1}n and

pkVRF1
$←− {0, 1}n. Then it computes pkVRF2 ← PRF(skVRF, pkVRF1) and sets

pkVRF = (pkVRF1, pkVRF2)
VRFEval(skVRF, x) : Given skVRF and a message x, the algorithm computes:

1. y ← PRF(skVRF, x)
2. pk.check← (x, y, pkVRF)
3. πNIZK ← Prove(pk.check, skVRF). For a relation R the NIZK proof πNIZK

holds iff:

7

(a) y ← PRF(skVRF, x) and
(b) pkVRF2 ← PRF(skVRF, pkVRF1).
This can be done due to the KKW [22,21] procedure on a binary circuit
composed of two PRFs (LowMC block cipher as explained before) linked
with an additional "AND" gate, assuring that both statements are fulfilled.

VRFVerify(y, x, πNIZK) : On input (πNIZK, x, y) it runs NIZK verification algo-
rithm Verify(x, y, πNIZK) of the underlying KKW NIZK proof and outputs 0/1.

The security depends on the properties of the underlying PRF for a given key
skVRF (collision resistance and one-wayness) and the security of KKW [22].

SL-VRF Security Discussion. The provability of SL-VRF follows via direct
investigation. As long as the underlying KKW NIZK proof is correct, SL-VRF
is provable. The security, i.e. uniqueness and pseudorandomness of our SL-VRF
depends on the properties of the underlying PRF. The uniqueness follows from
two facts; first, the PRF output is a deterministic function of the secret key
skVRF and the input x, meaning that evaluating the PRF twice on the same value
yields the same output. Secondly, the validity proof of the statement (3)(b) in the
VRF evaluation procedure (VRFEval) presented in Section 3.1 forces each user to
use her fixed secret key for each evaluation. This ensures uniqueness due to the
deterministic property of the PRF as explained before. The pseudorandomness of
the VRF output is inherited from the corresponding pseudorandomness property
of the underlying PRF. In order to evaluate the efficiency of our SL-VRF, we
need to analyse the underlying NIZK proof construction. A detailed evaluation
is provided in Section 5.

4 X-VRF: Verifiable Random Function from XMSS

This section introduces a construction of a secure VRF from XMSS (see Defi-
nition 2 in Appendix A.3). As discussed in the introduction, naively extending
XMSS to a VRF does not result in a secure construction as the uniqueness prop-
erty can easily be violated. In particular, when a user constructs a hash tree in
XMSS, she can use any of the leaves (i.e., WOTS+ keys) to create the XMSS
signature. As a result, XMSS by itself does not satisfy uniqueness.

This is indeed very problematic in a blockchain application that, for example,
uses the VRF output to perform leader election (as in Algorand). More specifi-
cally, the user can simply create a huge hash tree, say, with N leaves for XMSS.
Then she will be able to amplify her success probability of being elected by a
factor of N , as she can try to create the XMSS-based VRF output from each
leave and can output the one that is successful.

To circumvent this problem, we index every VRF evaluation and modify the
uniqueness requirement to the case where for a fixed message and public key,
the VRF evaluations with the same index always lead to the same value. Then,
in the later sections, we enforce all users to use a pre-determined index ctr when
creating an XMSS-based VRF output. This way, the users cannot choose between
multiple leaves and can only produce a single signature output on a message.

8

4.1 X-VRF from XMSS Construction

ParamGen(1λ) : On input security parameter λ, output public parameters
ppVRF = H, for H : {0, 1}∗ → {0, 1}n. Where H is a hash function.

KeyGen(ppVRF) : On input public parameters ppVRF,
1. Run (XMSS.idx,XMSS.sk,XMSS.pk)← XMSS.KeyGen(1λ),
2. Output (idxVRF, pkVRF, skVRF) = (XMSS.idx,XMSS.pk,XMSS.sk).

VRFEval(skVRF, x, idxVRF) : On input skVRF = XMSS.sk, a message x and an in-
dex ctr = idxVRF,
1. Run XMSS.σ = (WOTS+.σ, i,XMSS.Auth)← XMSS.Sign(XMSS.sk, x, ctr),
2. Set πVRF = XMSS.σ,
3. Compute yVRF ← H(XMSS.σ, x),
4. Output (πVRF, yVRF).

VRFVerify(pkVRF, x, yVRF, πVRF) : On input (πVRF, yVRF), the public key pkVRF and
a VRF input x,
1. Parse πVRF = XMSS.σ = (WOTS+.σ, i,XMSS.Auth),
2. If i and XMSS.Auth are inconsistent (i.e., if the leaf index indicated by

XMSS.Auth is not equal to i), output NO.
3. Otherwise, if the verification of XMSS.σ succeeds and yVRF =

H(XMSS.σ, x), output YES.
4. Otherwise output NO.

In VRFEval, the counter decides which leaf of the XMSS tree is used and this
is checked in VRFVerify. In our blockchain application, we enforce users to use
a specific publicly known counter value. This is so that the user cannot choose
multiple leaves to create a VRF output at a particular point. This is crucial to
guarantee uniqueness. It is indeed easy to establish a global counter value in the
blockchain environment since it can simply be set to the block number K mod
N , where N is a fixed public integer denoting the maximum number of rounds
a key pair can be used. In particular, we set N = 2h for an XMSS tree of height
h (See Figure 1 for an example with N = 4).

We also remark that with access to such a global counter, the users no longer
need to store individual state information. That is, the VRF itself in a way
becomes stateless as the users can simply retrieve the block number from the
blockchain and do not need to worry about maintaining a state themselves.

4.2 X-VRF Security Analysis

The most critical property we need to analyze is the uniqueness. To this end, we
first focus on the uniqueness of XMSS under the constraint that the index used to
create the signature is the same. This leads to the following lemma whose proof
is given in Appendix A.1. Then, we state the security of X-VRF and provide its
proof in Appendix A.2.

Lemma 1 (XMSS Uniqueness). Let XMSS.σ1 = (WOTS+.σ1, i,XMSS.Auth1)
and XMSS.σ2 = (WOTS+.σ2, i,XMSS.Auth2) be two valid XMSS signatures cre-
ated by a PPT adversary on the same message m and under the same public

9

Table 1: Performance evaluation of X-VRF, SL-VRF, ECVRF and LB-VRF. For LB-
VRF, we report the results provided in [12]. For the memory requirement of X-VRF,
an evaluator stores 2h 256-bit values for h ∈ {15, 19, 23, 27}.
Instances ECVRF X-VRF-15 X-VRF-19 X-VRF-23 X-VRF-27 SL-VRF LB-VRF
Memory for
Eval

negl. 1 MB 16 MB 256 MB 4 GB negl. negl.

PK size 32 B 64 B 64 B 64 B 64 B 48 B 3.32 KB
SK size 32 B 132 B 132 B 132 B 132 B 24 B 0.45 KB
Proof size 80 B 2.63 KB 2.76 KB 2.88 KB 3.01 KB 40 KB 4.94 KB
KeyGen 0.05 ms 48.9 s 14.2 min 3.73 h ≈ 58 h 0.38 ms 0.33 ms
VRFEval 0.10 ms 0.72 ms 0.75 ms 0.78 ms 0.80 ms 765 ms 3.1 ms
VRFVerify 0.10 ms 0.87 ms 0.91 ms 0.94 ms 0.97 ms 475 ms 1.3 ms

key XMSS.pk and the same index i (i.e., XMSS.Verify(XMSS.pk,m,XMSS.σ1) =
XMSS.Verify(XMSS.pk,m,XMSS.σ2) = 1). If the hash function used in the XMSS
definition is collision-resistant, then XMSS.σ1 = XMSS.σ2 (i.e., XMSS is unique
provided that the indices in the two signatures are the same).

Theorem 1 (X-VRF Security). X-VRF is correct and satisfies the properties
of computational uniqueness and pseudorandomness in the random oracle model.
In particular, the uniqueness holds in the sense that the same ctr (or leaf index)
must be used in VRFEval as in Lemma 1.

5 Implementation and Evaluation

This section presents the implementation results of our X-VRF construction as
well as the naive SL-VRF which is used as a baseline for comparison. Tradi-
tionally, VRF constructions from unique signatures require the signature to be
stateless. However, we argue that in most of the blockchain applications a state-
ful VRF is sufficient as the blockchain can easily maintain the state.

Both SL-VRF and X-VRF have been implemented in C for a level of post-
quantum security of λ = 128. We choose to work with SHA-256 as the hash
function. The implementation of SL-VRF is based on [25]. It couples KKW [22]
with the Fiat-Shamir transform to get a NIZK. The implementation of X-VRF is
derived from the XMSS implementation provided in [18]. Both implementations
were deployed on a machine with an Intel(R) Core i7-86500 CPU @ 1.90GHz
12GB of RAM.

5.1 VRF Proof Sizes

Table 1 summarizes the proof size of each instance. As expected, the X-VRF
constructions clearly outperform SL-VRF with proof sizes at least 13.3 times
smaller. The VRF proof size in a X-VRF instance denoted by |X-VRF.πVRF| is
computed by the following formula |X-VRF.πVRF| = h · n + n · len. The VRF
proof of our SL-VRF construction depends only on the size of the NIZK proof

10

[21]. The size that we presented in Figure 1 differs from the one provided by
Katz et al. [22]. The reason behind this is that we used the parameter of the
NIST submission presented in [21] which have been optimized to give a com-
promise between algorithm efficiency and proof size. The size of the VRF proof
for SL-VRF construction is denoted by |SL-VRF.πVRF|, and we refer the reader
to [22,21] for further details.

5.2 Memory Requirements

In Table 1, we propose applicable memory requirements for our four instances of
X-VRF. It is important to know that the memory capacity impacts principally
the X-VRF evaluation procedure. The X-VRF key generation procedure does not
require expensive memory as the full XMSS tree does not need to be fully stored.

A capacious memory can reduce the offline computations for the XMSS eval-
uation procedure that are the authentication path selection (the grey nodes in
Figure 3). Devices with high memory capacity will be able to store the whole
XMSS tree and therefore avoid any offline computation. However, the required
memory to store the full tree (together with the WOTS+ keys) would be imprac-
tical particularly for the X-VRF-23 and X-VRF-27 instances which would require
respectively 35 GB and 350 GB to store the complete binary tree. Therefore,
we propose to store the h − 1 levels of the XMSS tree (i.e., the whole tree ex-
cept the bottom leaves and WOTS+ keys). This means that offline computations
are necessary every two evaluations and requires the computation of the two
WOTS+ key pairs based on a secret seed and a PRF. For example in Figure 3, if
XMSS.index = 0, the offline phase computes both first WOTS+ key pairs. Then,
if XMSS.index = 1 there is no offline computation required as both first WOTS+

key pairs have been generated. Then, when XMSS.index = 2 the offline computa-
tion will generate WOTS+ key pairs number 2 and 3. The memory required with
this technique for all instances is highlighted in Table 1. This advantage to have
cheap offline computations (� 1 ms) needs to be done for only half of the X-VRF
evaluations. Most importantly, it requires a maximum of 4GB of memory, which
can be considered to be acceptable and applicable to lightweight devices.

5.3 VRF Computation Efficiency

We further present four instances of X-VRF with different heights of the XMSS
tree. We evaluated VRF with heights 15 (denoted as X-VRF-15), 19 (denoted
as X-VRF-19), 23 (denoted as X-VRF-23) and 27 (denoted as X-VRF-27). This
means each of these instances can generate, respectively, at most 215, 219, 223
and 227 VRF evaluations. Table 1 summarizes the performance of each instance.
When it comes to the key generation procedure, SL-VRF outperforms all X-VRF
instances as expected. This is because it only requires the selection of a random
element of n bits, while all four instances of X-VRF need to generate XMSS tree
with a greater height which leads to more computation.

Although the KeyGen of SL-VRF is much faster than that of X-VRF, the
running time of the evaluation algorithm Eval of SL-VRF cannot compete with

11

Table 2: Estimated TPS for our VRFs with different signatures on various number of
nodes. ‘N/A’ means the given number of nodes cannot be supported.
#Nodes Signature X-VRF-15 X-VRF-19 X-VRF-23 X-VRF-27 SL-VRF ECVRF LB-VRF

Ed25519 1010 1010 1010 1009 940 1015 1000
10 Rainbow 1008 1008 1008 1007 938 1013 998

SPHINCS+ 34 34 34 34 32 34 32
Ed25519 990 989 988 987 639 1014 939

50 Rainbow 988 987 986 985 638 1012 937
SPHINCS+ 33 33 33 33 21 34 22
Ed25519 966 963 961 958 263 1014 862

100 Rainbow 964 961 959 957 263 1012 861
SPHINCS+ 32 32 32 32 9 34 10
Ed25519 521 496 474 449 1000

N/A1000 Rainbow 520 495 473 448 N/A 998
SPHINCS+ 17 17 16 15 34

Key Lifetime 45 hours 1 month 1.3 years >20 years Practically unlimited 5 seconds

the stateful construction X-VRF. Eval of SL-VRF requires the simulation of MPC
computation, which is quite costly.

The performance of the evaluation algorithm of X-VRF instances is really
competitive. The underlying reason is that only the WOTS+ signature needs to
be computed at the spot, as the authentication path could be pre-computed. For
X-VRF, the evaluation cost is at most (w − 1) · len calls of the cryptographic
hash function. Our results demonstrates that X-VRF is at least 956 times faster
than SL-VRF for the VRF evaluation.

The VRF verification of X-VRF also outperforms SL-VRF by at least 474 ms.
The total cost verification for SL-VRF is the verification of a number of execution
of the MPC-in-the-head with P − 1 parties (details presented in [21]), while
X-VRF needs only a maximum of h+w · len+ log len calls to the hash function
H. Note that verification runtime in the blockchain application is an important
metric as this needs to be repeated by all (honest) committee members.

6 Integration to Algorand

In this section, we discuss the details of our X-VRF integration into the Algo-
rand consensus protocol. As discussed earlier, the uniqueness of X-VRF (and the
underlying XMSS signature) crucially relies on enforcing the use of a single pre-
determined counter ctr in VRFEval (or index XMSS.idx in XMSS.Sign). We can
achieve this easily in the blockchain setting. In particular, there is already the
block number that serves as a globally agreed, inalterable and publicly accessi-
ble counter. Let N = 2h be the number of leaves in XMSS and K be the block
number. Then, we let the verifiers check that the ctr (or XMSS.idx) used at block
number K is equal to K mod N . Therefore, every user is forced to use the leaves
in a certain order and we can achieve uniqueness.

6.1 Performance Estimation

To better illustrate our benchmark results, it is important to understand the
bottleneck of the current Algorand protocol. As of September 2020, Algorand’s

12

mainnet employs over 1000 nodes, and allows for roughly 5.4 MB of data prop-
agated per block, as a result of their efficient consensus protocol. It consists of
5000 signed transactions, at 1064 bytes each, and 80 KB for VRF data. To break
up the VRF part, 1000 nodes implies 1000 ECVRF proofs, which is around 80
KB of data. It is straightforward to see that the majority of the data is reserved
for transactions. Under the assumption that a transaction is 1KB on average,
and the signature is Ed25519, Algorand allows for 5K transactions per block,
or, roughly 1K transaction per second (TPS) as Algorand generates a block in
about 5 seconds.

Note that, in Algorand, although the final blocks only log transactions (while
VRF payload is not included in the final blocks by design - the committee mem-
bers only attest that they have seen enough votes, without putting that informa-
tion to the block for performance reasons), the actual data propagated through
the network during each block is indeed the combination of VRF payload and the
transaction payload. Therefore it makes sense to use this total payload size as
the network’s throughput limitation, rather than the actual blocksize. To sum-
marize, we follow [12] and estimate the Algorand TPS throughput as follows:

TPS =
payload size− total VRF cost×#nodes

(transaction size+ signature size)× blocktime
.

Note that as ‘refreshing’ a key pair happens much less frequently for X-VRF (in
comparison to LB-VRF), the per-round cost of a key refreshment is negligible
in our setting. Using the above formula, we estimate the TPS throughput of
Algorand using our VRF in combination with different signature schemes that
are used to authenticate transactions. In this computation, we make the following
assumptions as in [12] for a fair comparison. We assume a payload size of 5.4MB.
We follow Algorand and assume 1 KB data for transaction size. As Algorand
generates a block in about 5 seconds, we take blocktime as 5 seconds. The last
moving part in the equation is the signature size. For this component, we consider
the original Ed25519 signature used by Algorand, whose signature size is 64
bytes. In addition, we also consider two extreme cases in the post-quantum
setting: (i) Rainbow8 [11] -the shortest signature finalist candidate in NIST’s
Post-Quantum Cryptography standardization process- whose signature size is
as small as 66 bytes9, and (ii) SPHINCS+ [5], whose signature is 30696 bytes,
which relies on symmetric primitives only. For X-VRF, we further set the tree
heights as 15, 19, 23, 27. This means a user can use the same key in X-VRF for
roughly 45 hours, 30.3 days, 1.33 years and more than 20 years, respectively. For
SL-VRF, the nodes would not ever need to re-generate keys in practice. We will
talk about X-VRF key schedules in the next section.

Turning to the performance comparison, as one shall see in Table 2, our
X-VRF can be integrated into Algorand for all four settings. For the real-world
scenario (1000 nodes), with X-VRF we see a roughly 55% reduction in TPS for

8 https://www.pqcrainbow.org/
9 The signature length of 48 bytes of an earlier Rainbow version is used in [12].

13

https://www.pqcrainbow.org/

both Ed25519 and Rainbow. Note that it is a common understanding that post-
quantum cryptography performs much worse, compared to classical ones. Hence,
we believe that even a 55% reduction should be considered as a great achievement
of our solution, rather than a drawback. The throughput for SPHINCS+ is much
worse, recording 16 TPS on average. We note that even this case is still faster
than Bitcoin (at 5 TPS). On the other hand, the stateless VRF SL-VRF does
not perform well for large networks. Our simulation shows that the consensus is
only possible for a network of at most around 100 nodes. When the number of
nodes is higher, the blockchain capacity is not sufficient to transmit the SL-VRF
payload, thus, making the protocol unusable.

6.2 Dual Key Scheduling

Now that we know X-VRF provides a more practical solution than SL-VRF, it is
imperative to argue the usability of our stateful X-VRF. In our vision, a protocol
should deploy both X-VRF and SL-VRF. X-VRF provides great performance, and
should always be used when they are available. However, as per setup, an X-VRF
key needs to be refreshed once in a while, requiring the user to be online at a
certain time. This update requires an additional 64 bytes for VRF public keys,
and a signature on the public key for authenticity, per cycle. We consider this cost
to be negligible, compared to the remaining cost as for X-VRF-23, for example, a
cycle happens only every 1.33 years. In practice though, we cannot rule out the
cases where users may lose their keys. For conservative purposes, nonetheless,
it is desirable to have a backup plan: the user falls back to SL-VRF if he has
consumed all X-VRF keys and has not uploaded a new X-VRF key (see Fig. 1).

There are nonetheless two additional subtleties here. First, if every user needs
to update their keys periodically, the network may be flooded by X-VRF keys
that are never used. Our solution is as follows. For relay nodes who may be very
frequently selected as committee members, we suggest to use X-VRF. They are
actually a very small portion of the user base, and account for the majority of
VRF payloads. For casual users who perhaps will vote rarely in their lifetime, it
is sufficient to use SL-VRF, which minimizes the number of key updates.

The other issue is with the VRF randomness. At a given round when the
user does not have an X-VRF key, the user may actually choose to either upload
a new X-VRF key, or use his default SL-VRF key. This breaks the uniqueness of
the VRF. Our solution is to enforce the user to announce its new X-VRF key a
few (say, k) rounds prior to it being active, where k is a system parameter and
is currently set to 10 by Algorand blockchain. This approach is indeed already
adopted by Algorand with its ECVRF, to limit attackers with a large share
of tokens from speculating the block randomness (derived from ECVRF) in the
future. It is straightforward to see that, with this restriction, for any given round,
if the user has announced an X-VRF key 10 blocks earlier, then it must use that
key; otherwise it must use its SL-VRF key. Thus, uniqueness remains intact.

Eventually, we achieve a post-quantum blockchain that supports both X-VRF
and SL-VRF. Under the assumption that most of the users will be online regularly,
we further assert that the final TPS will be (very) close to the data for X-VRF

14

in Table 2. Since this dual VRF is an orthogonal direction from this paper, we
leave the rigorous analysis to future work.

6.3 X-VRF Instances

As explained previously, we propose four different instances of X-VRF and these
are the only applicable constructions to Algorand’s 1000-node setting as the
results in Table 2 demonstrate. Because of the stateful nature of the XMSS sig-
nature, there is a maximum number of possible VRF evaluations per key pair.
Our goal in the choice of XMSS tree heights is to have VRF instances that can
be used for at least one day in Algorand (X-VRF-15) without updating the keys,
another for at least one month (X-VRF-19), the third one for at least one year
(X-VRF-23) and the last one (X-VRF-27) which could be used for more than
20 years. Each of these VRF instances has different advantages which can be
summarized as follows. When using the X-VRF-15, the keys need to be updated
every 45 hours. If we assume that each node stores the full XMSS tree it will
require 1 MB of storage which is 256 times less than the memory required to
store a XMSS tree when using the X-VRF-23 and even 4096 times less than in
the case of X-VRF-27. The main disadvantage of using X-VRF-15 is the regular
key update that needs to be performed every 45 hours yielding several regular
updates during the year. X-VRF-19 allows the network to update the keys only
once per month but the computational cost of these monthly updates is 32 times
higher than the cost needed when X-VRF-15 is used. X-VRF-23 offers the pos-
sibility to make this update only every 1.33 years but the cost of this update
for each node takes 3.73 hours on our machine and is 256 times greater than
the cost required in X-VRF-15. Finally our last instance, X-VRF-27 avoids the
need for a key update for more than 20 years, the key generation would be only
necessary when new nodes join the network or when a node has lost its key. The
main advantage of this instance is that the network does not need to go through
a regular key update similar to the SL-VRF instances. The disadvantage is the
cost to join the network or the cost of losing the key which takes around two
days on our machine and is 4096 times greater than the cost of an update in
X-VRF-15.

Table 2 illustrates the expected TPS for each of X-VRF instances, and as
explained previously the best performance is achieved with the Rainbow signa-
ture scheme. For this part, we assume that nodes will not lose their key. For a
network composed of 10 nodes, all X-VRF instances achieve the same expected
TPS which means that in a network of 10 to 50 nodes instances with fewer key
updates could be privileged. For a network of 100 nodes, X-VRF-15 achieves the
best TPS, however its TPS difference with X-VRF-27 consists of only 8 trans-
action per second. When there are 1000 nodes the difference of TPS is logically
larger, X-VRF-15 could process 72 transactions per second more than X-VRF-27
when using Ed25519 or Rainbow signature scheme. However, the synchroniza-
tion of a generalized key update for a larger network could be more challenging
and could slow down the process.

15

Memory Optimization. We presented in Section 5.2 the ideal memory re-
quirement to achieve a balance between offline computations and memory con-
sumption (See Table 1). However, it is important to know that these memory
requirements are flexible and can be adapted to user specified preconditions.
As previously explained, the fast way to evaluate the VRF is to pre-store the
path in the tree and then compute the WOTS+ signature for the current round.
However, the current node does not necessarily need to store h− 1 levels of the
full tree. Indeed, the node can pre-compute and store only certain paths that
are needed for the rounds in the near future. As the rounds progress, the paths
that are no longer needed can be discarded and new paths can be pre-computed
and stored. This way, we can keep the memory requirements at even lower levels.
Overall, there are straightforward trade-offs to be considered depending on the
user’s system specifications.

Choice of Instance. We showed that all four X-VRF constructions are promis-
ing post-quantum VRFs applicable in an existing network like Algorand. Each
of them have different advantages going from memory consumption to key up-
date times. To avoid the challenges of synchronizing key updates throughout the
network, X-VRF-27 appears to be the best. If the focus is on achieving the best
TPS and reducing the impact of key loss, then X-VRF-15 would be the best.
X-VRF-23 provides a trade-off between TPS and the recurrence of key updates.
Moreover, our proposition of a dual key system by coupling X-VRF with SL-VRF
combines the best of two worlds.

6.4 Comparison with Current State-of-the-art and Final Remarks

To the best of our knowledge, there exists only one other practical post-quantum
VRF provided in [12] using lattice-based techniques and we refer to it as LB-
VRF. Table 2 presents the expected TPS in Algorand, as given in [12], for
LB-VRF. Our results show that all four X-VRF instances outperform LB-VRF
when it comes to TPS for all node sizes due to its shortest proof size of X-VRF
instances compared to LB-VRF (see Table 1). As the number of nodes increases,
the advantage of our constructions increases. Another disadvantage of LB-VRF is
that the users need to update their keys at every round (block generation), hence
every 5 seconds in the case of Algorand. Our X-VRF construction, on the other
hand, can support the use of the same key pair for at least 45 hours; e.g. X-VRF-
15, which has the shortest key lifetime. X-VRF-27 offers the possibility to work
with the same key for more than 20 years. Even if it is difficult to compare the
algorithms’ performances because they were not executed on the same machine
as LB-VRF numbers were taken from the original paper [12], X-VRF seems to
be more efficient when it comes to VRF Evaluation performances as LB-VRF
takes 3.1ms while the slowest X-VRF takes only 0.8 ms. The difference between
both verification procedures is too small to draw any conclusion.

This paper introduced the first-known post-quantum VRFs based on sym-
metric primitives. Our XMSS-based X-VRF proposals, which are made possi-
ble thanks to the innovative idea of linking the state of the blockchain with

16

the state of XMSS, support a competitive number of transactions per second
in a post-quantum PoS-based consensus protocol. It outperforms the one-time
lattice-based VRF when it comes to proof size, while allowing the evaluation
of multiple input. The X-VRF is based on long-studied symmetric primitives,
all X-VRF instances provide strong security assurances, while also being highly
efficient and substantially outperforming current state of the art performances.

References

1. Algorand-what we do. Available at https://www.algorand.com/what-we-do/faq.
2. Proof of stake instead of proof of work, July 2011. Available at https://

bitcointalk.org/index.php?topic=27787.0.
3. M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. Ciphers

for mpc and fhe. In EUROCRYPT 2015, pages 430–454. Springer, 2015.
4. D. J. Bernstein. Introduction to post-quantum cryptography. In Post-quantum

cryptography, pages 1–14. Springer, 2009.
5. D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rijneveld, and P. Schwabe.

The sphincs+ signature framework. In L. Cavallaro, J. Kinder, X. Wang, and
J. Katz, editors, ACM CCS 2019, pages 2129–2146. ACM, 2019.

6. J. Buchmann, E. Dahmen, and A. Hülsing. Xmss-a practical forward secure sig-
nature scheme based on minimal security assumptions. In International Workshop
on Post-Quantum Cryptography, pages 117–129. Springer, 2011.

7. M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rechberger, D. Sla-
manig, and G. Zaverucha. Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In ACM CCS 2017, pages 1825–1842, 2017.

8. B. David, P. Gaži, A. Kiayias, and A. Russell. Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In EUROCRYPT 2018, pages
66–98. Springer, 2018.

9. A. S. de Pedro, D. Levi, and L. I. Cuende. Witnet: A decentralized oracle network
protocol. arXiv preprint arXiv:1711.09756, 2017.

10. O. Dial. Eagle’s quantum performance progress. IBM Research Blog, March
24, 2022, 2022. https://research.ibm.com/blog/eagle-quantum-processor-
performance.

11. J. Ding and D. Schmidt. Rainbow, a new multivariable polynomial signature
scheme. In ACNS 2005, volume 3531 of LNCS, pages 164–175, 2005.

12. M. F. Esgin, V. Kuchta, A. Sakzad, R. Steinfeld, Z. Zhang, S. Sun, and S. Chu.
Practical post-quantum few-time verifiable random function with applications to
algorand. In FC, pages 560–578. Springer, 2021.

13. Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scaling
byzantine agreements for cryptocurrencies. In SOSP 2017, page 51–68. Association
for Computing Machinery, 2017.

14. S. Goldwasser and R. Ostrovsky. Invariant signatures and non-interactive zero-
knowledge proofs are equivalent. In CRYPTO 1992, pages 228–245. Springer,
1992.

15. S. Gorbunov. Algorand releases first open-source code: Verifiable random function,
2018. Available at https://medium.com/algorand/algorand-releases-first-
open-source-code-of-verifiable-random-function-93c2960abd61.

16. T. Hanke, M. Movahedi, and D. Williams. Dfinity technology overview series,
consensus system. arXiv preprint arXiv:1805.04548, 2018.

17

https://www.algorand.com/what-we-do/faq
https://bitcointalk.org/index.php?topic=27787.0
https://bitcointalk.org/index.php?topic=27787.0
https://research.ibm.com/blog/eagle-quantum-processor-performance
https://research.ibm.com/blog/eagle-quantum-processor-performance
https://medium.com/algorand/algorand-releases-first-open-source-code-of-verifiable-random-function-93c2960abd61
https://medium.com/algorand/algorand-releases-first-open-source-code-of-verifiable-random-function-93c2960abd61

17. L. Hellebrandt, I. Homoliak, K. Malinka, and P. Hanáček. Increasing trust in tor
node list using blockchain. In IEEE ICBC 2019, pages 29–32. IEEE, 2019.

18. A. Hülsing. Xmss implementation. Available at https://github.com/XMSS/xmss-
reference.

19. A. Hülsing. W-OTS+ - shorter signatures for hash-based signature schemes. In
AFRICACRYPT, volume 7918, pages 173–188. Springer, 2013.

20. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput., 39(3):1121–1152, 2009.

21. D. Kales and G. Zaverucha. Improving the performance of the picnic signature
scheme. IACR TCHES, pages 154–188, 2020.

22. J. Katz, V. Kolesnikov, and X. Wang. Improved non-interactive zero knowledge
with applications to post-quantum signatures. In ACM CCS 2018, pages 525–537,
2018.

23. W. Li, S. Andreina, J.-M. Bohli, and G. Karame. Securing proof-of-stake blockchain
protocols. In Data Privacy Management, Cryptocurrencies and Blockchain Tech-
nology, pages 297–315. Springer, 2017.

24. S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In 40th annual
symposium on foundations of computer science (cat. No. 99CB37039), pages 120–
130. IEEE, 1999.

25. G. Zaverucha. Picnic implementation. Available at https://github.com/
microsoft/Picnic.

A Appendix

Fig. 1: XMSS/X-VRF state and Blockchain

A.1 Proof of Lemma 1

Proof. Let XMSS.pk be a public key and m be a message. Fix an index i ∈
[0, 2h − 1]. Also, let XMSS.σ1 = (WOTS+.σ1, i,XMSS.Auth1) and XMSS.σ2 =
(WOTS+.σ2, i,XMSS.Auth2) be two valid signatures created by a PPT adversary
on m using XMSS.pk and i. It is clear that XMSS.Auth1 = XMSS.Auth2 as the
leaf index and the tree root is the same if the hash function is collision-resistant.
We now just need to show that WOTS+.σ1 = WOTS+.σ2, which is true for
deterministic XMSS as explained in [6].

18

https://github.com/XMSS/xmss-reference
https://github.com/XMSS/xmss-reference
https://github.com/microsoft/Picnic
https://github.com/microsoft/Picnic

Exp
pr
A : OVRFEval(skVRF, x)

1 ppVRF ← ParamGen(1λ) return (yVRF, pkVRF)
2. (pkVRF, skVRF)← KeyGen(ppVRF)

3. (x, st)← AOVRFEval(skVRF,·)
1 (pkVRF)

4. (yVRF,0, ·)← VRFEval(skVRF, x)

5. yVRF,1
$← {0, 1}m(λ)

6. b $← {0, 1}
7. b′ ← AOVRFEval(skVRF,·)

2 (yVRF,b, st)

Fig. 2: Pseudorandomness Experiment

A.2 Proof of Theorem 1

Proof. We prove the three properties of Definition 1.

Correctness. The correctness of X-VRF follows via direct investigation. As long
as the underlying XMSS scheme is correct, X-VRF is correct.

Uniqueness. To prove uniqueness of our X-VRF scheme by a reduction to the
uniqueness property of the underlying XMSS scheme, we assume Aunq being an
adversary against uniqueness property of our X-VRF scheme. We can construct
an adversary Bunq against the uniqueness property of the underlying XMSS. Let
yVRF1, yVRF2 be two different outputs and πVRF1, πVRF2 the two respective proofs
generated by Aunq on the same input x. We know that yVRFi = H(XMSS.σi, x)
and πi = XMSS.σi for i ∈ {1, 2}. If yVRF1 6= yVRF2, then we must have
XMSS.σ1 6= XMSS.σ2. Set m = x being the input message of the XMSS.Sign
algorithm. Since x is the same in both signatures XMSS.σ1 and XMSS.σ2, it
follows that the XMSS signature scheme is not unique, which contradicts the
uniqueness property stated in Lemma 1.

Pseudorandomness. Let Apr be a PPT adversary against the pseudorandom-
ness of our X-VRF scheme. Recall that yVRF = H(XMSS.σ, x) where H is modelled
as a random oracle and XMSS.σ is a signature on x. Also recall that XMSS.σ
contains WOTS+.σ which is the (iterated) hash of some completely random and
independent n-bit strings unknown to Apr. So, any WOTS+.σ results in just
some random bit string that is contained in XMSS.σ. Hence, the only way Apr
can distinguish yVRF from a uniformly random value happens if Apr has queried
H on the input (XMSS.σ, x), which happens with negligible probability since Apr
cannot query the signing oracle on x. From here, the pseudorandomness property
follows.

A.3 XMSS Signature Scheme

We introduce the concept of XMSS signature from which our VRF is constructed.
XMSS is based on the idea of Merkle trees (see Fig. 3) which are binary trees
where each nodes is the hash of both its children. Each leaf correspond to the key
pair of a One-time digital signature named WOTS+. By definition, a WOTS+

19

key pair can be used to sign only one message and therefore, each leaf can be
only used once. Each signer keep a state XMSS.idx which is incremented after
each signature. A XMSS signature XMSS.σ is composed of a WOTS+ signature
WOTS+.σ, an index i, which indicates the position of the WOTS+ key pair in
the tree and the authentication path XMSS.Auth, which allows to recompute the
Merkle root from the WOTS+ signature to the root. The root is the the XMSS
public key XMSS.pk. A simple example is given in Fig. 3 which shows the fourth
signatures performed with the XMSS scheme.

Definition 2. XMSS is defined by a tuple of three algorithms

(XMSS.idx,XMSS.sk,XMSS.sk)← XMSS.KeyGen(1λ) : The key generation algo-
rithm on input the security parameter λ outputs a pair consisting of secret and
public keys and an index set to 0 which is the sate and indicate which leaf to
use for a signature. One part of the public key is the root of the tree XMSS.root
and the other part is a seed used to compute the bitmask (see Fig. 3).

(XMSS.σ)← XMSS.Sign(XMSS.sk,m,XMSS.idx) : The signing algorithm takes
as input the secret key XMSS.sk, XMSS.idx and a message m, and outputs a
signature XMSS.σ = (WOTS+.σ, i,XMSS.Auth) which composed of a WOTS+

signature, the index i that indicates the position of the WOTS+ signature in
the tree and the authentication path XMSS.Auth (the grey nodes in Fig. 3)

Accept/Reject← XMSS.Verify(XMSS.pk,m,XMSS.σ) : The verification algo-
rithm takes as input the public key XMSS.pk = (XMSS.root,XMSS.seed), the
message m and the signature XMSS.σ = (WOTS+.σ, i,XMSS.Auth). It verifies
the validity of the WOTS+ signature and then recompute the merkle root r′
from the WOTS+ public using the auhtentication path XMSS.Auth and follow-
ing the direction indicated by i. This outputs Accept iff r′ = XMSS.root, Reject
otherwise.

Fig. 3: The XMSS tree construction.

20

	Post-Quantum Verifiable Random Function from Symmetric Primitives in PoS Blockchain

